import threading from diffusers import AutoPipelineForText2Image from concurrent.futures import ThreadPoolExecutor, as_completed from PIL import Image import traceback class Scheduler: def __init__(self): self._step = threading.local() self._step.step = None def _init_step_index(self): self._step.step = 0 @property def step_index(self): if self._step.step is None: self._init_step_index() return self._step.step @step_index.setter def step_index(self, value): self._step.step = value def step_process(self, noise_pred, t, latents, **extra_step_kwargs): try: sigma_to = self.sigmas[self.step_index + 1] self.step_index += 1 # Process the step (pseudocode) # latents = process_latents(noise_pred, t, latents, sigma_to, **extra_step_kwargs) return latents except IndexError as e: print(f"Index error during step processing: {e}") traceback.print_exc() return latents # Mocking a model class for demonstration purposes class MockModel: def __init__(self): self.scheduler = Scheduler() def __call__(self, prompt, num_inference_steps, guidance_scale): # Simulate the inference steps latents = None for t in range(num_inference_steps): noise_pred = None # Replace with actual noise prediction latents = self.scheduler.step_process(noise_pred, t, latents) return {"images": [Image.new("RGB", (512, 512))]} # Return a dummy image for now # Load the actual model model = MockModel() def generate_image(prompt): try: output = model(prompt=prompt, num_inference_steps=3, guidance_scale=0.0) print(f"Model output: {output}") # Check if the model returned images if isinstance(output['images'], list) and len(output['images']) > 0: return output['images'][0] else: raise Exception("No images returned by the model.") except Exception as e: print(f"Error generating image: {e}") traceback.print_exc() return None def inference(sentence_mapping, character_dict, selected_style): images = [] print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}') prompts = [] for paragraph_number, sentences in sentence_mapping.items(): combined_sentence = " ".join(sentences) prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) prompts.append(prompt) print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") with ThreadPoolExecutor() as executor: futures = [executor.submit(generate_image, prompt) for prompt in prompts] for future in as_completed(futures): try: image = future.result() if image: images.append(image) except Exception as e: print(f"Error processing prompt: {e}") traceback.print_exc() return images gradio_interface = gr.Interface( fn=inference, inputs=[ gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") ], outputs=gr.Gallery(label="Generated Images") ) if __name__ == "__main__": gradio_interface.launch()