import gradio as gr import torch from diffusers import AutoPipelineForText2Image from io import BytesIO from generate_propmts import generate_prompt from concurrent.futures import ThreadPoolExecutor, as_completed import json # Load the model once outside of the function model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") def generate_image(prompt): try: # Truncate prompt if necessary output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0] print(f"Model output: {output}") # Check if the model returned images if output.images: image = output.images[0] buffered = BytesIO() image.save(buffered, format="JPEG") image_bytes = buffered.getvalue() return image_bytes else: raise Exception("No images returned by the model.") except Exception as e: print(f"Error generating image: {e}") return None def inference(sentence_mapping, character_dict, selected_style): images = {} print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}') prompts = [] # Generate prompts for each paragraph for paragraph_number, sentences in sentence_mapping.items(): combined_sentence = " ".join(sentences) prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) prompts.append((paragraph_number, prompt)) print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") with ThreadPoolExecutor() as executor: future_to_paragraph = {executor.submit(generate_image, prompt): paragraph_number for paragraph_number, prompt in prompts} for future in as_completed(future_to_paragraph): paragraph_number = future_to_paragraph[future] try: image = future.result() if image: images[paragraph_number] = image except Exception as e: print(f"Error processing paragraph {paragraph_number}: {e}") return images gradio_interface = gr.Interface( fn=inference, inputs=[ gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") ], outputs="json" ) if __name__ == "__main__": gradio_interface.launch()