import gradio as gr import torch from diffusers import AutoPipelineForText2Image from io import BytesIO from generate_propmts import generate_prompt from concurrent.futures import ThreadPoolExecutor import asyncio # Load the model once outside of the function model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") async def generate_image(prompt): try: # Truncate prompt if necessary output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0) print(f"Model output: {output}") # Check if the model returned images if isinstance(output.images, list) and len(output.images) > 0: image = output.images[0] buffered = BytesIO() image.save(buffered, format="JPEG") image_bytes = buffered.getvalue() return image_bytes else: raise Exception("No images returned by the model.") except Exception as e: print(f"Error generating image: {e}") return None async def process_prompt(sentence_mapping, character_dict, selected_style): images = {} print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}') prompts = [] # Generate prompts for each paragraph for paragraph_number, sentences in sentence_mapping.items(): combined_sentence = " ".join(sentences) prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) prompts.append((paragraph_number, prompt)) print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") loop = asyncio.get_event_loop() tasks = [] with ThreadPoolExecutor() as executor: for paragraph_number, prompt in prompts: tasks.append(loop.run_in_executor(executor, generate_image, prompt)) for paragraph_number, task in zip(sentence_mapping.keys(), await asyncio.gather(*tasks)): try: image = task if image: images[paragraph_number] = image except Exception as e: print(f"Error processing paragraph {paragraph_number}: {e}") return images gradio_interface = gr.Interface( fn=process_prompt, inputs=[ gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") ], outputs="json", concurrency_limit=10 # Allow up to 10 concurrent executions ) if __name__ == "__main__": gradio_interface.launch()