import gradio as gr from diffusers import AutoPipelineForText2Image from generate_propmts import generate_prompt from concurrent.futures import ThreadPoolExecutor, as_completed from PIL import Image import traceback # Load the model once outside of the function model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") def generate_image(prompt): try: output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0) print(f"Model output: {output}") # Check if the model returned images if isinstance(output.images, list) and len(output.images) > 0: return output.images[0] else: raise Exception("No images returned by the model.") except IndexError as e: print(f"Index error during image generation: {e}") traceback.print_exc() return None except Exception as e: print(f"Error generating image: {e}") traceback.print_exc() return None def inference(sentence_mapping, character_dict, selected_style): images = [] print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}') prompts = [] # Generate prompts for each paragraph for paragraph_number, sentences in sentence_mapping.items(): combined_sentence = " ".join(sentences) prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) prompts.append(prompt) print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") with ThreadPoolExecutor() as executor: futures = [executor.submit(generate_image, prompt) for prompt in prompts] for future in as_completed(futures): try: image = future.result() if image: images.append(image) except Exception as e: print(f"Error processing prompt: {e}") traceback.print_exc() return images gradio_interface = gr.Interface( fn=inference, inputs=[ gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") ], outputs=gr.Gallery(label="Generated Images") ).queue(default_concurrency_limit=5) if __name__ == "__main__": gradio_interface.launch()