Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,66 @@
|
|
1 |
-
import
|
2 |
from diffusers import AutoPipelineForText2Image
|
3 |
-
from generate_propmts import generate_prompt
|
4 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
5 |
from PIL import Image
|
6 |
import traceback
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def generate_image(prompt):
|
12 |
try:
|
13 |
-
output = model(prompt=prompt, num_inference_steps=
|
14 |
print(f"Model output: {output}")
|
15 |
|
16 |
# Check if the model returned images
|
17 |
-
if isinstance(output
|
18 |
-
return output
|
19 |
else:
|
20 |
raise Exception("No images returned by the model.")
|
21 |
|
22 |
-
except IndexError as e:
|
23 |
-
print(f"Index error during image generation: {e}")
|
24 |
-
traceback.print_exc()
|
25 |
-
return None
|
26 |
except Exception as e:
|
27 |
print(f"Error generating image: {e}")
|
28 |
traceback.print_exc()
|
@@ -33,7 +71,6 @@ def inference(sentence_mapping, character_dict, selected_style):
|
|
33 |
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
|
34 |
prompts = []
|
35 |
|
36 |
-
# Generate prompts for each paragraph
|
37 |
for paragraph_number, sentences in sentence_mapping.items():
|
38 |
combined_sentence = " ".join(sentences)
|
39 |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|
|
|
1 |
+
import threading
|
2 |
from diffusers import AutoPipelineForText2Image
|
|
|
3 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
4 |
from PIL import Image
|
5 |
import traceback
|
6 |
|
7 |
+
class Scheduler:
|
8 |
+
def __init__(self):
|
9 |
+
self._step = threading.local()
|
10 |
+
self._step.step = None
|
11 |
+
|
12 |
+
def _init_step_index(self):
|
13 |
+
self._step.step = 0
|
14 |
+
|
15 |
+
@property
|
16 |
+
def step_index(self):
|
17 |
+
if self._step.step is None:
|
18 |
+
self._init_step_index()
|
19 |
+
return self._step.step
|
20 |
+
|
21 |
+
@step_index.setter
|
22 |
+
def step_index(self, value):
|
23 |
+
self._step.step = value
|
24 |
+
|
25 |
+
def step_process(self, noise_pred, t, latents, **extra_step_kwargs):
|
26 |
+
try:
|
27 |
+
sigma_to = self.sigmas[self.step_index + 1]
|
28 |
+
self.step_index += 1
|
29 |
+
# Process the step (pseudocode)
|
30 |
+
# latents = process_latents(noise_pred, t, latents, sigma_to, **extra_step_kwargs)
|
31 |
+
return latents
|
32 |
+
except IndexError as e:
|
33 |
+
print(f"Index error during step processing: {e}")
|
34 |
+
traceback.print_exc()
|
35 |
+
return latents
|
36 |
+
|
37 |
+
# Mocking a model class for demonstration purposes
|
38 |
+
class MockModel:
|
39 |
+
def __init__(self):
|
40 |
+
self.scheduler = Scheduler()
|
41 |
+
|
42 |
+
def __call__(self, prompt, num_inference_steps, guidance_scale):
|
43 |
+
# Simulate the inference steps
|
44 |
+
latents = None
|
45 |
+
for t in range(num_inference_steps):
|
46 |
+
noise_pred = None # Replace with actual noise prediction
|
47 |
+
latents = self.scheduler.step_process(noise_pred, t, latents)
|
48 |
+
return {"images": [Image.new("RGB", (512, 512))]} # Return a dummy image for now
|
49 |
+
|
50 |
+
# Load the actual model
|
51 |
+
model = MockModel()
|
52 |
|
53 |
def generate_image(prompt):
|
54 |
try:
|
55 |
+
output = model(prompt=prompt, num_inference_steps=3, guidance_scale=0.0)
|
56 |
print(f"Model output: {output}")
|
57 |
|
58 |
# Check if the model returned images
|
59 |
+
if isinstance(output['images'], list) and len(output['images']) > 0:
|
60 |
+
return output['images'][0]
|
61 |
else:
|
62 |
raise Exception("No images returned by the model.")
|
63 |
|
|
|
|
|
|
|
|
|
64 |
except Exception as e:
|
65 |
print(f"Error generating image: {e}")
|
66 |
traceback.print_exc()
|
|
|
71 |
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
|
72 |
prompts = []
|
73 |
|
|
|
74 |
for paragraph_number, sentences in sentence_mapping.items():
|
75 |
combined_sentence = " ".join(sentences)
|
76 |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|