RanM commited on
Commit
b5de60f
·
verified ·
1 Parent(s): 3a13c98

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -11
app.py CHANGED
@@ -4,22 +4,50 @@ from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
 
7
 
8
- # Asynchronously load the model once outside of the function
9
- model = None
 
 
10
 
11
- async def load_model():
12
- global model
13
- print("Loading the model...")
14
- model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
15
- print("Model loaded successfully.")
16
 
17
- asyncio.run(load_model())
 
 
 
18
 
19
- async def generate_image(prompt, prompt_name):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  try:
 
 
 
 
 
21
  print(f"Generating response for {prompt_name} with prompt: {prompt}")
 
22
  output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
 
 
 
 
 
23
  print(f"Output for {prompt_name}: {output}")
24
 
25
  # Check if the model returned images
@@ -48,12 +76,13 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
48
  for paragraph_number, sentences in sentence_mapping.items():
49
  combined_sentence = " ".join(sentences)
50
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
51
- prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) # Correct prompt generation
52
  prompts.append((paragraph_number, prompt))
53
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
54
 
55
  # Generate images for each prompt in parallel
56
- tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
 
57
  print("Tasks created for image generation.")
58
  responses = await asyncio.gather(*tasks)
59
  print("Responses received from image generation tasks.")
@@ -73,6 +102,9 @@ def process_prompt(sentence_mapping, character_dict, selected_style):
73
  asyncio.set_event_loop(loop)
74
  print("Event loop created.")
75
 
 
 
 
76
  # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
77
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
78
  print(f"process_prompt completed with return value: {cmpt_return}")
 
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
+ import threading
8
 
9
+ # Load the model once outside of the function
10
+ print("Loading the model...")
11
+ model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
12
+ print("Model loaded successfully.")
13
 
14
+ # Create a thread-local storage object
15
+ thread_local = threading.local()
 
 
 
16
 
17
+ class Scheduler:
18
+ def __init__(self):
19
+ self._step = threading.local()
20
+ self._init_step_index()
21
 
22
+ def _init_step_index(self):
23
+ self._step.step = 0
24
+ print(f"Initialized step index: {self._step.step}")
25
+
26
+ @property
27
+ def step(self):
28
+ return self._step.step
29
+
30
+ def step_process(self):
31
+ self._step.step += 1
32
+ print(f"Step index updated to: {self._step.step}")
33
+
34
+ scheduler = Scheduler()
35
+
36
+ def generate_image(prompt, prompt_name):
37
  try:
38
+ # Initialize step index for the current thread if not already done
39
+ if not hasattr(scheduler._step, 'step'):
40
+ scheduler._init_step_index()
41
+
42
+ print(f"Initial step index for {prompt_name}: {scheduler.step}")
43
  print(f"Generating response for {prompt_name} with prompt: {prompt}")
44
+
45
  output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
46
+
47
+ # Update and print step index
48
+ scheduler.step_process()
49
+ print(f"Updated step index for {prompt_name}: {scheduler.step}")
50
+
51
  print(f"Output for {prompt_name}: {output}")
52
 
53
  # Check if the model returned images
 
76
  for paragraph_number, sentences in sentence_mapping.items():
77
  combined_sentence = " ".join(sentences)
78
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
79
+ prompt = generate_prompt(combined_sentence, character_dict, selected_style) # Correct prompt generation
80
  prompts.append((paragraph_number, prompt))
81
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
82
 
83
  # Generate images for each prompt in parallel
84
+ loop = asyncio.get_running_loop()
85
+ tasks = [loop.run_in_executor(None, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
86
  print("Tasks created for image generation.")
87
  responses = await asyncio.gather(*tasks)
88
  print("Responses received from image generation tasks.")
 
102
  asyncio.set_event_loop(loop)
103
  print("Event loop created.")
104
 
105
+ # Initialize thread-local variables
106
+ scheduler._init_step_index()
107
+
108
  # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
109
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
110
  print(f"process_prompt completed with return value: {cmpt_return}")