RanM commited on
Commit
adacb89
·
verified ·
1 Parent(s): 72ebbf6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -44
app.py CHANGED
@@ -1,53 +1,24 @@
1
- import os
2
  import asyncio
3
  from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
- import threading
8
 
9
- # Load the model once outside of the function
10
- print("Loading the model...")
11
- model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
12
- print("Model loaded successfully.")
13
 
14
- # Create a thread-local storage object
15
- thread_local = threading.local()
 
 
 
16
 
17
- class Scheduler:
18
- def __init__(self):
19
- self._step = threading.local()
20
- self._init_step_index()
21
 
22
- def _init_step_index(self):
23
- self._step.step = 0
24
- print(f"Initialized step index: {self._step.step}")
25
-
26
- @property
27
- def step(self):
28
- return self._step.step
29
-
30
- def step_process(self):
31
- self._step.step += 1
32
- print(f"Step index updated to: {self._step.step}")
33
-
34
- scheduler = Scheduler()
35
-
36
- def generate_image(prompt, prompt_name):
37
  try:
38
- # Initialize step index for the current thread if not already done
39
- if not hasattr(scheduler._step, 'step'):
40
- scheduler._init_step_index()
41
-
42
- print(f"Initial step index for {prompt_name}: {scheduler.step}")
43
  print(f"Generating response for {prompt_name} with prompt: {prompt}")
44
-
45
  output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
46
-
47
- # Update and print step index
48
- scheduler.step_process()
49
- print(f"Updated step index for {prompt_name}: {scheduler.step}")
50
-
51
  print(f"Output for {prompt_name}: {output}")
52
 
53
  # Check if the model returned images
@@ -76,13 +47,12 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
76
  for paragraph_number, sentences in sentence_mapping.items():
77
  combined_sentence = " ".join(sentences)
78
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
79
- prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) # Correct prompt generation
80
  prompts.append((paragraph_number, prompt))
81
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
82
 
83
  # Generate images for each prompt in parallel
84
- loop = asyncio.get_running_loop()
85
- tasks = [loop.run_in_executor(None, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
86
  print("Tasks created for image generation.")
87
  responses = await asyncio.gather(*tasks)
88
  print("Responses received from image generation tasks.")
@@ -102,9 +72,6 @@ def process_prompt(sentence_mapping, character_dict, selected_style):
102
  asyncio.set_event_loop(loop)
103
  print("Event loop created.")
104
 
105
- # Initialize thread-local variables
106
- scheduler._init_step_index()
107
-
108
  # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
109
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
110
  print(f"process_prompt completed with return value: {cmpt_return}")
 
 
1
  import asyncio
2
  from generate_prompts import generate_prompt
3
  from diffusers import AutoPipelineForText2Image
4
  from io import BytesIO
5
  import gradio as gr
 
6
 
7
+ # Asynchronously load the model once outside of the function
8
+ model = None
 
 
9
 
10
+ async def load_model():
11
+ global model
12
+ print("Loading the model...")
13
+ model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
14
+ print("Model loaded successfully.")
15
 
16
+ asyncio.run(load_model())
 
 
 
17
 
18
+ async def generate_image(prompt, prompt_name):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  try:
 
 
 
 
 
20
  print(f"Generating response for {prompt_name} with prompt: {prompt}")
 
21
  output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
 
 
 
 
 
22
  print(f"Output for {prompt_name}: {output}")
23
 
24
  # Check if the model returned images
 
47
  for paragraph_number, sentences in sentence_mapping.items():
48
  combined_sentence = " ".join(sentences)
49
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
50
+ prompt = generate_prompt(combined_sentence, character_dict, selected_style) # Correct prompt generation
51
  prompts.append((paragraph_number, prompt))
52
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
53
 
54
  # Generate images for each prompt in parallel
55
+ tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
 
56
  print("Tasks created for image generation.")
57
  responses = await asyncio.gather(*tasks)
58
  print("Responses received from image generation tasks.")
 
72
  asyncio.set_event_loop(loop)
73
  print("Event loop created.")
74
 
 
 
 
75
  # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
76
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
77
  print(f"process_prompt completed with return value: {cmpt_return}")