RanM commited on
Commit
94bdfb6
·
verified ·
1 Parent(s): 3a80045

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -8
app.py CHANGED
@@ -4,7 +4,7 @@ from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
- from multiprocessing import Pool, cpu_count
8
 
9
  # Load the model once outside of the function
10
  print("Loading the model...")
@@ -35,7 +35,7 @@ def generate_image(prompt, prompt_name):
35
  print(f"Error generating image for {prompt_name}: {e}")
36
  return None
37
 
38
- async def queue_api_calls(sentence_mapping, character_dict, selected_style):
39
  print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
40
  prompts = []
41
 
@@ -47,13 +47,21 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
47
  prompts.append((paragraph_number, prompt))
48
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
49
 
50
- # Use multiprocessing Pool to generate images in parallel
51
- with Pool(cpu_count()) as pool:
52
- tasks = [(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
53
- responses = pool.starmap(generate_image, tasks)
54
- print("Responses received from image generation tasks.")
 
 
 
 
 
 
 
 
 
55
 
56
- images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
57
  print(f"Images generated: {images}")
58
  return images
59
 
 
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
+ from concurrent.futures import ThreadPoolExecutor
8
 
9
  # Load the model once outside of the function
10
  print("Loading the model...")
 
35
  print(f"Error generating image for {prompt_name}: {e}")
36
  return None
37
 
38
+ async def queue_api_calls(sentence_mapping, character_dict, selected_style, batch_size=5):
39
  print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
40
  prompts = []
41
 
 
47
  prompts.append((paragraph_number, prompt))
48
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
49
 
50
+ # Set max_workers to the total number of prompts
51
+ max_workers = min(batch_size, len(prompts))
52
+
53
+ # Generate images for each prompt in parallel using threading
54
+ images = {}
55
+ with ThreadPoolExecutor(max_workers=max_workers) as executor:
56
+ loop = asyncio.get_running_loop()
57
+ for i in range(0, len(prompts), batch_size):
58
+ batch_prompts = prompts[i:i+batch_size]
59
+ tasks = [loop.run_in_executor(executor, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in batch_prompts]
60
+ print("Tasks created for image generation.")
61
+ responses = await asyncio.gather(*tasks)
62
+ print("Responses received from image generation tasks.")
63
+ images.update({paragraph_number: response for (paragraph_number, _), response in zip(batch_prompts, responses)})
64
 
 
65
  print(f"Images generated: {images}")
66
  return images
67