Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
import asyncio
|
2 |
-
import json
|
3 |
import gradio as gr
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from generate_prompts import generate_prompt
|
@@ -7,10 +5,10 @@ from generate_prompts import generate_prompt
|
|
7 |
# Load the model once outside of the function
|
8 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
9 |
|
10 |
-
|
11 |
try:
|
12 |
print(f"Generating image for {prompt_name}")
|
13 |
-
output =
|
14 |
image = output.images[0]
|
15 |
img_bytes = image.tobytes()
|
16 |
print(f"Image bytes length for {prompt_name}: {len(img_bytes)}")
|
@@ -19,23 +17,9 @@ async def generate_image(prompt, prompt_name):
|
|
19 |
print(f"Error generating image for {prompt_name}: {e}")
|
20 |
return None
|
21 |
|
22 |
-
async def queue_image_calls(prompts):
|
23 |
-
tasks = [generate_image(prompts[i], f"Prompt {i}") for i in range(len(prompts))]
|
24 |
-
responses = await asyncio.gather(*tasks)
|
25 |
-
return responses
|
26 |
-
|
27 |
-
def async_image_generation(prompts):
|
28 |
-
try:
|
29 |
-
loop = asyncio.get_running_loop()
|
30 |
-
except RuntimeError:
|
31 |
-
loop = asyncio.new_event_loop()
|
32 |
-
asyncio.set_event_loop(loop)
|
33 |
-
results = loop.run_until_complete(queue_image_calls(prompts))
|
34 |
-
return results
|
35 |
-
|
36 |
def gradio_interface(sentence_mapping, character_dict, selected_style):
|
37 |
prompts = generate_prompt(sentence_mapping, character_dict, selected_style)
|
38 |
-
image_bytes_list =
|
39 |
outputs = [gr.Image.update(value=img_bytes) if img_bytes else gr.Image.update(value=None) for img_bytes in image_bytes_list]
|
40 |
return outputs
|
41 |
|
@@ -48,7 +32,6 @@ with gr.Blocks() as demo:
|
|
48 |
selected_style_input = gr.Textbox(label="Selected Style")
|
49 |
submit_btn = gr.Button(value='Submit')
|
50 |
prompt_responses = [] # Empty list for dynamic addition of Image components
|
51 |
-
demo.load(fn=lambda x: x, inputs=[], outputs=prompt_responses)
|
52 |
submit_btn.click(fn=gradio_interface,
|
53 |
inputs=[sentence_mapping_input, character_dict_input, selected_style_input],
|
54 |
outputs=prompt_responses)
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from diffusers import AutoPipelineForText2Image
|
3 |
from generate_prompts import generate_prompt
|
|
|
5 |
# Load the model once outside of the function
|
6 |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
7 |
|
8 |
+
def generate_image(prompt, prompt_name):
|
9 |
try:
|
10 |
print(f"Generating image for {prompt_name}")
|
11 |
+
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
12 |
image = output.images[0]
|
13 |
img_bytes = image.tobytes()
|
14 |
print(f"Image bytes length for {prompt_name}: {len(img_bytes)}")
|
|
|
17 |
print(f"Error generating image for {prompt_name}: {e}")
|
18 |
return None
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def gradio_interface(sentence_mapping, character_dict, selected_style):
|
21 |
prompts = generate_prompt(sentence_mapping, character_dict, selected_style)
|
22 |
+
image_bytes_list = [generate_image(prompt, f"Prompt {i}") for i, prompt in enumerate(prompts)]
|
23 |
outputs = [gr.Image.update(value=img_bytes) if img_bytes else gr.Image.update(value=None) for img_bytes in image_bytes_list]
|
24 |
return outputs
|
25 |
|
|
|
32 |
selected_style_input = gr.Textbox(label="Selected Style")
|
33 |
submit_btn = gr.Button(value='Submit')
|
34 |
prompt_responses = [] # Empty list for dynamic addition of Image components
|
|
|
35 |
submit_btn.click(fn=gradio_interface,
|
36 |
inputs=[sentence_mapping_input, character_dict_input, selected_style_input],
|
37 |
outputs=prompt_responses)
|