Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,28 +2,29 @@ import os
|
|
2 |
import asyncio
|
3 |
from concurrent.futures import ProcessPoolExecutor
|
4 |
from io import BytesIO
|
|
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
import gradio as gr
|
7 |
from generate_prompts import generate_prompt
|
8 |
|
9 |
# Load the model once at the start
|
10 |
print("Loading the Stable Diffusion model...")
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
prompt = " ".join(tokens[:max_length])
|
18 |
-
return prompt
|
19 |
|
20 |
def generate_image(prompt, prompt_name):
|
21 |
try:
|
|
|
|
|
|
|
22 |
print(f"Generating image for {prompt_name} with prompt: {prompt}")
|
23 |
-
|
24 |
-
output = model(prompt=truncated_prompt, num_inference_steps=1, guidance_scale=0.0)
|
25 |
print(f"Model output for {prompt_name}: {output}")
|
26 |
-
|
27 |
if output and hasattr(output, 'images') and output.images:
|
28 |
print(f"Image generated for {prompt_name}")
|
29 |
image = output.images[0]
|
@@ -40,6 +41,7 @@ def generate_image(prompt, prompt_name):
|
|
40 |
|
41 |
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
42 |
print("Starting to queue API calls...")
|
|
|
43 |
prompts = []
|
44 |
for paragraph_number, sentences in sentence_mapping.items():
|
45 |
combined_sentence = " ".join(sentences)
|
|
|
2 |
import asyncio
|
3 |
from concurrent.futures import ProcessPoolExecutor
|
4 |
from io import BytesIO
|
5 |
+
from PIL import Image
|
6 |
from diffusers import StableDiffusionPipeline
|
7 |
import gradio as gr
|
8 |
from generate_prompts import generate_prompt
|
9 |
|
10 |
# Load the model once at the start
|
11 |
print("Loading the Stable Diffusion model...")
|
12 |
+
try:
|
13 |
+
model = StableDiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo")
|
14 |
+
print("Model loaded successfully.")
|
15 |
+
except Exception as e:
|
16 |
+
print(f"Error loading model: {e}")
|
17 |
+
model = None
|
|
|
|
|
18 |
|
19 |
def generate_image(prompt, prompt_name):
|
20 |
try:
|
21 |
+
if model is None:
|
22 |
+
raise ValueError("Model not loaded properly.")
|
23 |
+
|
24 |
print(f"Generating image for {prompt_name} with prompt: {prompt}")
|
25 |
+
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
|
|
26 |
print(f"Model output for {prompt_name}: {output}")
|
27 |
+
|
28 |
if output and hasattr(output, 'images') and output.images:
|
29 |
print(f"Image generated for {prompt_name}")
|
30 |
image = output.images[0]
|
|
|
41 |
|
42 |
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
43 |
print("Starting to queue API calls...")
|
44 |
+
print(f'sentence_mapping"{sentence_mapping}')
|
45 |
prompts = []
|
46 |
for paragraph_number, sentences in sentence_mapping.items():
|
47 |
combined_sentence = " ".join(sentences)
|