RanM commited on
Commit
5d3e1b1
·
verified ·
1 Parent(s): fd77b23

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -17,7 +17,7 @@ class ModelActor:
17
  """
18
  self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
19
 
20
- def generate_image(self, prompt, prompt_name):
21
  """
22
  Generates an image based on the provided prompt.
23
  Parameters:
@@ -29,7 +29,7 @@ class ModelActor:
29
  start_time = time.time()
30
  process_id = os.getpid()
31
  try:
32
- output = self.model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
33
  if isinstance(output.images, list) and len(output.images) > 0:
34
  image = output.images[0]
35
  buffered = BytesIO()
@@ -63,8 +63,7 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
63
  model_actors = [ModelActor.remote() for _ in range(num_actors)]
64
  tasks = [model_actors[i % num_actors].generate_image.remote(prompt, f"Prompt {paragraph_number}") for i, (paragraph_number, prompt) in enumerate(prompts)]
65
 
66
- # Use asyncio.to_thread to call ray.get() synchronously in an async context
67
- responses = await asyncio.gather(*[asyncio.to_thread(ray.get, task) for task in tasks])
68
  images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
69
  return images
70
 
@@ -91,7 +90,7 @@ gradio_interface = gr.Interface(
91
  fn=process_prompt,
92
  inputs=[gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")],
93
  outputs="json"
94
- ).queue(default_concurrency_limit=20) # Adjust the concurrency limit as needed
95
 
96
  if __name__ == "__main__":
97
  gradio_interface.launch()
 
17
  """
18
  self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
19
 
20
+ async def generate_image(self, prompt, prompt_name):
21
  """
22
  Generates an image based on the provided prompt.
23
  Parameters:
 
29
  start_time = time.time()
30
  process_id = os.getpid()
31
  try:
32
+ output = await self.model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
33
  if isinstance(output.images, list) and len(output.images) > 0:
34
  image = output.images[0]
35
  buffered = BytesIO()
 
63
  model_actors = [ModelActor.remote() for _ in range(num_actors)]
64
  tasks = [model_actors[i % num_actors].generate_image.remote(prompt, f"Prompt {paragraph_number}") for i, (paragraph_number, prompt) in enumerate(prompts)]
65
 
66
+ responses = await asyncio.gather(*[ray.get(task) for task in tasks])
 
67
  images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
68
  return images
69
 
 
90
  fn=process_prompt,
91
  inputs=[gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")],
92
  outputs="json"
93
+ ).queue(default_concurrency_limit=20) # Set concurrency limit to match the number of model actors
94
 
95
  if __name__ == "__main__":
96
  gradio_interface.launch()