Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,45 @@
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
-
|
4 |
from io import BytesIO
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
import gradio as gr
|
7 |
from generate_prompts import generate_prompt
|
8 |
|
9 |
-
#
|
|
|
10 |
model = StableDiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo")
|
|
|
11 |
|
12 |
def generate_image(prompt, prompt_name):
|
13 |
-
"""
|
14 |
-
Generates an image based on the provided prompt.
|
15 |
-
Parameters:
|
16 |
-
- prompt (str): The input text for image generation.
|
17 |
-
- prompt_name (str): A name for the prompt, used for logging.
|
18 |
-
Returns:
|
19 |
-
bytes: The generated image data in bytes format, or None if generation fails.
|
20 |
-
"""
|
21 |
try:
|
22 |
print(f"Generating image for {prompt_name}")
|
23 |
-
output = model(prompt=prompt, num_inference_steps=
|
24 |
-
if
|
|
|
25 |
image = output.images[0]
|
26 |
buffered = BytesIO()
|
27 |
image.save(buffered, format="JPEG")
|
28 |
image_bytes = buffered.getvalue()
|
29 |
return image_bytes
|
30 |
else:
|
|
|
31 |
return None
|
32 |
except Exception as e:
|
33 |
print(f"An error occurred while generating image for {prompt_name}: {e}")
|
34 |
return None
|
35 |
|
36 |
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
37 |
-
""
|
38 |
-
Generates images for all provided prompts in parallel using ProcessPoolExecutor.
|
39 |
-
Parameters:
|
40 |
-
- sentence_mapping (dict): Mapping between paragraph numbers and sentences.
|
41 |
-
- character_dict (dict): Dictionary mapping characters to their descriptions.
|
42 |
-
- selected_style (str): Selected illustration style.
|
43 |
-
Returns:
|
44 |
-
dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
|
45 |
-
"""
|
46 |
prompts = []
|
47 |
for paragraph_number, sentences in sentence_mapping.items():
|
48 |
combined_sentence = " ".join(sentences)
|
49 |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|
50 |
prompts.append((paragraph_number, prompt))
|
|
|
51 |
|
52 |
loop = asyncio.get_running_loop()
|
53 |
-
with
|
54 |
tasks = [
|
55 |
loop.run_in_executor(pool, generate_image, prompt, f"Prompt {paragraph_number}")
|
56 |
for paragraph_number, prompt in prompts
|
@@ -58,32 +47,36 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
|
58 |
responses = await asyncio.gather(*tasks)
|
59 |
|
60 |
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
|
|
|
61 |
return images
|
62 |
|
63 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
64 |
-
""
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
- character_dict (dict): Dictionary mapping characters to their descriptions.
|
69 |
-
- selected_style (str): Selected illustration style.
|
70 |
-
Returns:
|
71 |
-
dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
|
72 |
-
"""
|
73 |
try:
|
74 |
loop = asyncio.get_running_loop()
|
|
|
75 |
except RuntimeError:
|
76 |
loop = asyncio.new_event_loop()
|
77 |
asyncio.set_event_loop(loop)
|
|
|
78 |
|
79 |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
|
|
80 |
return cmpt_return
|
81 |
|
82 |
gradio_interface = gr.Interface(
|
83 |
fn=process_prompt,
|
84 |
-
inputs=[
|
|
|
|
|
|
|
|
|
85 |
outputs="json"
|
86 |
).queue(default_concurrency_limit=20) # Set concurrency limit if needed
|
87 |
|
88 |
if __name__ == "__main__":
|
|
|
89 |
gradio_interface.launch()
|
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
+
from concurrent.futures import ProcessPoolExecutor
|
4 |
from io import BytesIO
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
import gradio as gr
|
7 |
from generate_prompts import generate_prompt
|
8 |
|
9 |
+
# Load the model once at the start
|
10 |
+
print("Loading the Stable Diffusion model...")
|
11 |
model = StableDiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo")
|
12 |
+
print("Model loaded successfully.")
|
13 |
|
14 |
def generate_image(prompt, prompt_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
try:
|
16 |
print(f"Generating image for {prompt_name}")
|
17 |
+
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
18 |
+
if output and hasattr(output, 'images') and len(output.images) > 0:
|
19 |
+
print(f"Image generated for {prompt_name}")
|
20 |
image = output.images[0]
|
21 |
buffered = BytesIO()
|
22 |
image.save(buffered, format="JPEG")
|
23 |
image_bytes = buffered.getvalue()
|
24 |
return image_bytes
|
25 |
else:
|
26 |
+
print(f"No images found for {prompt_name}")
|
27 |
return None
|
28 |
except Exception as e:
|
29 |
print(f"An error occurred while generating image for {prompt_name}: {e}")
|
30 |
return None
|
31 |
|
32 |
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
33 |
+
print("Starting to queue API calls...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
prompts = []
|
35 |
for paragraph_number, sentences in sentence_mapping.items():
|
36 |
combined_sentence = " ".join(sentences)
|
37 |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|
38 |
prompts.append((paragraph_number, prompt))
|
39 |
+
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
40 |
|
41 |
loop = asyncio.get_running_loop()
|
42 |
+
with ProcessPoolExecutor() as pool:
|
43 |
tasks = [
|
44 |
loop.run_in_executor(pool, generate_image, prompt, f"Prompt {paragraph_number}")
|
45 |
for paragraph_number, prompt in prompts
|
|
|
47 |
responses = await asyncio.gather(*tasks)
|
48 |
|
49 |
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
|
50 |
+
print("Finished queuing API calls.")
|
51 |
return images
|
52 |
|
53 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
54 |
+
print("Processing prompt...")
|
55 |
+
print(f"Sentence Mapping: {sentence_mapping}")
|
56 |
+
print(f"Character Dict: {character_dict}")
|
57 |
+
print(f"Selected Style: {selected_style}")
|
|
|
|
|
|
|
|
|
|
|
58 |
try:
|
59 |
loop = asyncio.get_running_loop()
|
60 |
+
print("Using existing event loop.")
|
61 |
except RuntimeError:
|
62 |
loop = asyncio.new_event_loop()
|
63 |
asyncio.set_event_loop(loop)
|
64 |
+
print("Created new event loop.")
|
65 |
|
66 |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
67 |
+
print("Prompt processing complete.")
|
68 |
return cmpt_return
|
69 |
|
70 |
gradio_interface = gr.Interface(
|
71 |
fn=process_prompt,
|
72 |
+
inputs=[
|
73 |
+
gr.JSON(label="Sentence Mapping"),
|
74 |
+
gr.JSON(label="Character Dict"),
|
75 |
+
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
|
76 |
+
],
|
77 |
outputs="json"
|
78 |
).queue(default_concurrency_limit=20) # Set concurrency limit if needed
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
+
print("Launching Gradio interface...")
|
82 |
gradio_interface.launch()
|