RanM commited on
Commit
56ffa2a
·
verified ·
1 Parent(s): e09515c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -34
app.py CHANGED
@@ -1,12 +1,12 @@
1
  import os
2
- import asyncio
3
  from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
- from concurrent.futures import ProcessPoolExecutor
8
 
9
- # Load the model once outside of the function
10
  print("Loading the model...")
11
  model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
12
  print("Model loaded successfully.")
@@ -25,21 +25,20 @@ def generate_image(prompt, prompt_name):
25
  image.save(buffered, format="JPEG")
26
  image_bytes = buffered.getvalue()
27
  print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
28
- return image_bytes
29
  except Exception as e:
30
  print(f"Error saving image for {prompt_name}: {e}")
31
- return None
32
  else:
33
  raise Exception(f"No images returned by the model for {prompt_name}.")
34
  except Exception as e:
35
  print(f"Error generating image for {prompt_name}: {e}")
36
- return None
37
 
38
- async def queue_api_calls(sentence_mapping, character_dict, selected_style):
39
- print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
 
40
  prompts = []
41
-
42
- # Generate prompts for each paragraph
43
  for paragraph_number, sentences in sentence_mapping.items():
44
  combined_sentence = " ".join(sentences)
45
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
@@ -47,38 +46,26 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
47
  prompts.append((paragraph_number, prompt))
48
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
49
 
50
- # Set max_workers to the total number of prompts
51
- max_workers = len(prompts)
52
 
53
- # Generate images for each prompt in parallel using multiprocessing
54
- with ProcessPoolExecutor(max_workers=max_workers) as executor:
55
- loop = asyncio.get_running_loop()
56
- tasks = [loop.run_in_executor(executor, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
57
- print("Tasks created for image generation.")
58
- responses = await asyncio.gather(*tasks)
59
- print("Responses received from image generation tasks.")
60
 
61
- images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
62
  print(f"Images generated: {images}")
63
  return images
64
 
65
  def process_prompt(sentence_mapping, character_dict, selected_style):
66
  print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
67
- try:
68
- # See if there is a loop already running. If there is, reuse it.
69
- loop = asyncio.get_running_loop()
70
- except RuntimeError:
71
- # Create new event loop if one is not running
72
- loop = asyncio.new_event_loop()
73
- asyncio.set_event_loop(loop)
74
- print("Event loop created.")
75
-
76
- # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
77
- cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
78
- print(f"process_prompt completed with return value: {cmpt_return}")
79
- return cmpt_return
80
 
81
- # Gradio interface with high concurrency limit
82
  gradio_interface = gr.Interface(
83
  fn=process_prompt,
84
  inputs=[
 
1
  import os
2
+ import concurrent.futures
3
  from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
+ import json
8
 
9
+ # Load the model once globally
10
  print("Loading the model...")
11
  model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
12
  print("Model loaded successfully.")
 
25
  image.save(buffered, format="JPEG")
26
  image_bytes = buffered.getvalue()
27
  print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
28
+ return prompt_name, image_bytes
29
  except Exception as e:
30
  print(f"Error saving image for {prompt_name}: {e}")
31
+ return prompt_name, None
32
  else:
33
  raise Exception(f"No images returned by the model for {prompt_name}.")
34
  except Exception as e:
35
  print(f"Error generating image for {prompt_name}: {e}")
36
+ return prompt_name, None
37
 
38
+ def process_prompts(sentence_mapping, character_dict, selected_style):
39
+ print(f"process_prompts called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
40
+
41
  prompts = []
 
 
42
  for paragraph_number, sentences in sentence_mapping.items():
43
  combined_sentence = " ".join(sentences)
44
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
 
46
  prompts.append((paragraph_number, prompt))
47
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
48
 
49
+ num_prompts = len(prompts)
50
+ print(f"Number of prompts: {num_prompts}")
51
 
52
+ with concurrent.futures.ThreadPoolExecutor(max_workers=num_prompts) as executor:
53
+ tasks = {executor.submit(generate_image, prompt, f"Prompt {paragraph_number}"): paragraph_number for paragraph_number, prompt in prompts}
54
+ results = {tasks[future]: future.result() for future in concurrent.futures.as_completed(tasks)}
 
 
 
 
55
 
56
+ images = {prompt_name: image for prompt_name, (prompt_name_key, image) in results.items()}
57
  print(f"Images generated: {images}")
58
  return images
59
 
60
  def process_prompt(sentence_mapping, character_dict, selected_style):
61
  print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
62
+ # Check if inputs are already in dict form
63
+ if isinstance(sentence_mapping, str):
64
+ sentence_mapping = json.loads(sentence_mapping)
65
+ if isinstance(character_dict, str):
66
+ character_dict = json.loads(character_dict)
67
+ return process_prompts(sentence_mapping, character_dict, selected_style)
 
 
 
 
 
 
 
68
 
 
69
  gradio_interface = gr.Interface(
70
  fn=process_prompt,
71
  inputs=[