RanM commited on
Commit
046e4ad
·
verified ·
1 Parent(s): a7e869d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -9
app.py CHANGED
@@ -1,43 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
2
  import torch
3
- from diffusers import DiffusionPipeline, AutoPipelineForText2Image
4
  import base64
5
  from io import BytesIO
6
 
7
 
8
-
9
  def load_amused_model():
10
  # pipeline = DiffusionPipeline.from_pretrained("Bakanayatsu/ponyDiffusion-V6-XL-Turbo-DPO")
11
  # AutoPipelineForText2Image.from_pretrained("stabilityai/sd-turbo")
12
  # AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
13
- return DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",
14
- safety_checker = None,
15
- requires_safety_checker = False)
16
-
17
 
18
  # Generate image from prompt using AmusedPipeline
19
  def generate_image(prompt):
20
  try:
21
  pipe = load_amused_model()
22
- generator = torch.Generator().manual_seed(8) # Create a generator for reproducibility
23
- image = pipe(prompt, generator=generator).images[0] # Generate image from prompt
 
 
 
 
 
 
 
24
  # image = pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
 
 
 
 
 
 
 
 
25
  return image, None
26
  except Exception as e:
27
  return None, str(e)
28
 
 
29
  def inference(prompt):
30
  print(f"Received prompt: {prompt}") # Debugging statement
31
  image, error = generate_image(prompt)
32
  if error:
33
  print(f"Error generating image: {error}") # Debugging statement
34
  return "Error: " + error
35
-
36
  buffered = BytesIO()
37
  image.save(buffered, format="PNG")
38
  img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
39
  return img_str
40
 
 
41
  gradio_interface = gr.Interface(
42
  fn=inference,
43
  inputs="text",
 
1
+ # import gradio as gr
2
+ # import torch
3
+ # from diffusers import DiffusionPipeline, AutoPipelineForText2Image
4
+ # import base64
5
+ # from io import BytesIO
6
+
7
+
8
+
9
+ # def load_amused_model():
10
+ # # pipeline = DiffusionPipeline.from_pretrained("Bakanayatsu/ponyDiffusion-V6-XL-Turbo-DPO")
11
+ # # AutoPipelineForText2Image.from_pretrained("stabilityai/sd-turbo")
12
+ # # AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
13
+ # return DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",
14
+ # safety_checker = None,
15
+ # requires_safety_checker = False)
16
+
17
+
18
+ # # Generate image from prompt using AmusedPipeline
19
+ # def generate_image(prompt):
20
+ # try:
21
+ # pipe = load_amused_model()
22
+ # generator = torch.Generator().manual_seed(8) # Create a generator for reproducibility
23
+ # image = pipe(prompt, generator=generator).images[0] # Generate image from prompt
24
+ # # image = pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
25
+ # return image, None
26
+ # except Exception as e:
27
+ # return None, str(e)
28
+
29
+ # def inference(prompt):
30
+ # print(f"Received prompt: {prompt}") # Debugging statement
31
+ # image, error = generate_image(prompt)
32
+ # if error:
33
+ # print(f"Error generating image: {error}") # Debugging statement
34
+ # return "Error: " + error
35
+
36
+ # buffered = BytesIO()
37
+ # image.save(buffered, format="PNG")
38
+ # img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
39
+ # return img_str
40
+
41
+ # gradio_interface = gr.Interface(
42
+ # fn=inference,
43
+ # inputs="text",
44
+ # outputs="text" # Change output to text to return base64 string
45
+ # )
46
+
47
+ # if __name__ == "__main__":
48
+ # gradio_interface.launch()
49
+
50
+
51
+
52
  import gradio as gr
53
+ from diffusers import DiffusionPipeline, DPMSolverSinglestepScheduler
54
  import torch
 
55
  import base64
56
  from io import BytesIO
57
 
58
 
 
59
  def load_amused_model():
60
  # pipeline = DiffusionPipeline.from_pretrained("Bakanayatsu/ponyDiffusion-V6-XL-Turbo-DPO")
61
  # AutoPipelineForText2Image.from_pretrained("stabilityai/sd-turbo")
62
  # AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
63
+ return DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float32).to("cpu")
64
+
 
 
65
 
66
  # Generate image from prompt using AmusedPipeline
67
  def generate_image(prompt):
68
  try:
69
  pipe = load_amused_model()
70
+ pipe.load_lora_weights(
71
+ "mann-e/Mann-E_Turbo",
72
+ weight_name="manne_turbo.safetensors",
73
+ )
74
+ # This is equivalent to DPM++ SDE Karras, as noted in https://huggingface.co/docs/diffusers/main/en/api/schedulers/overview
75
+ pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
76
+
77
+ #generator = torch.Generator().manual_seed(8) # Create a generator for reproducibility
78
+ #image = pipe(prompt, generator=generator).images[0] # Generate image from prompt
79
  # image = pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
80
+ image = pipe(
81
+ prompt="a cat in a bustling middle eastern city",
82
+ num_inference_steps=8,
83
+ guidance_scale=4,
84
+ width=768,
85
+ height=768,
86
+ clip_skip=1
87
+ ).images[0]
88
  return image, None
89
  except Exception as e:
90
  return None, str(e)
91
 
92
+
93
  def inference(prompt):
94
  print(f"Received prompt: {prompt}") # Debugging statement
95
  image, error = generate_image(prompt)
96
  if error:
97
  print(f"Error generating image: {error}") # Debugging statement
98
  return "Error: " + error
99
+
100
  buffered = BytesIO()
101
  image.save(buffered, format="PNG")
102
  img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
103
  return img_str
104
 
105
+
106
  gradio_interface = gr.Interface(
107
  fn=inference,
108
  inputs="text",