Spaces:
Runtime error
Runtime error
import gradio as gr | |
from diffusers import AutoPipelineForText2Image | |
from generate_propmts import generate_prompt | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from PIL import Image | |
import traceback | |
# Load the model once outside of the function | |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") | |
def generate_image(prompt): | |
try: | |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0) | |
print(f"Model output: {output}") | |
# Check if the model returned images | |
if isinstance(output.images, list) and len(output.images) > 0: | |
return output.images[0] | |
else: | |
raise Exception("No images returned by the model.") | |
except IndexError as e: | |
print(f"Index error during image generation: {e}") | |
traceback.print_exc() | |
return None | |
except Exception as e: | |
print(f"Error generating image: {e}") | |
traceback.print_exc() | |
return None | |
def inference(sentence_mapping, character_dict, selected_style): | |
images = [] | |
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}') | |
prompts = [] | |
# Generate prompts for each paragraph | |
for paragraph_number, sentences in sentence_mapping.items(): | |
combined_sentence = " ".join(sentences) | |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) | |
prompts.append(prompt) | |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") | |
with ThreadPoolExecutor() as executor: | |
futures = [executor.submit(generate_image, prompt) for prompt in prompts] | |
for future in as_completed(futures): | |
try: | |
image = future.result() | |
if image: | |
images.append(image) | |
except Exception as e: | |
print(f"Error processing prompt: {e}") | |
traceback.print_exc() | |
return images | |
gradio_interface = gr.Interface( | |
fn=inference, | |
inputs=[ | |
gr.JSON(label="Sentence Mapping"), | |
gr.JSON(label="Character Dict"), | |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") | |
], | |
outputs=gr.Gallery(label="Generated Images") | |
.queue(default_concurrency_limit=5) | |
if __name__ == "__main__": | |
gradio_interface.launch() | |