text2image_1 / app.py
RanM's picture
Update app.py
e647062 verified
raw
history blame
3.74 kB
import asyncio
from generate_prompts import generate_prompt
from diffusers import AutoPipelineForText2Image
from io import BytesIO
import gradio as gr
import anyio
# Asynchronously load the model once outside of the function
model = None
async def load_model():
global model
print("Loading the model...")
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
print("Model loaded successfully.")
# Run the model loading
asyncio.run(load_model())
async def generate_image(prompt, prompt_name):
try:
print(f"Generating response for {prompt_name} with prompt: {prompt}")
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
print(f"Output for {prompt_name}: {output}")
# Check if the model returned images
if isinstance(output.images, list) and len(output.images) > 0:
image = output.images[0]
buffered = BytesIO()
try:
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
return image_bytes
except Exception as e:
print(f"Error saving image for {prompt_name}: {e}")
return None
else:
raise Exception(f"No images returned by the model for {prompt_name}.")
except Exception as e:
print(f"Error generating image for {prompt_name}: {e}")
return None
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
prompts = []
# Generate prompts for each paragraph
for paragraph_number, sentences in sentence_mapping.items():
combined_sentence = " ".join(sentences)
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
prompt = generate_prompt(combined_sentence, character_dict, selected_style) # Correct prompt generation
prompts.append((paragraph_number, prompt))
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
# Generate images for each prompt in parallel
tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
print("Tasks created for image generation.")
responses = await asyncio.gather(*tasks)
print("Responses received from image generation tasks.")
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
print(f"Images generated: {images}")
return images
def process_prompt(sentence_mapping, character_dict, selected_style):
print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
async def run_async():
async with anyio.create_task_group() as task_group:
return await task_group.start(queue_api_calls, sentence_mapping, character_dict, selected_style)
cmpt_return = anyio.run(run_async)
print(f"process_prompt completed with return value: {cmpt_return}")
return cmpt_return
# Gradio interface with high concurrency limit
gradio_interface = gr.Interface(
fn=process_prompt,
inputs=[
gr.JSON(label="Sentence Mapping"),
gr.JSON(label="Character Dict"),
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
],
outputs="json"
)
if __name__ == "__main__":
print("Launching Gradio interface...")
gradio_interface.launch()
print("Gradio interface launched.")