text2image_1 / app.py
RanM's picture
Update app.py
d253f4a verified
raw
history blame
4.2 kB
import os
import asyncio
import time
from generate_prompts import generate_prompt
from diffusers import AutoPipelineForText2Image
from io import BytesIO
import gradio as gr
import ray
ray.init()
@ray.remote
class ModelActor:
def __init__(self):
print("Loading the model...")
self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
print("Model loaded successfully.")
def generate_image(self, prompt, prompt_name):
start_time = time.time()
process_id = os.getpid()
try:
print(f"[{process_id}] Generating response for {prompt_name} with prompt: {prompt}")
output = self.model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
print(f"[{process_id}] Output for {prompt_name}: {output}")
if isinstance(output.images, list) and len(output.images) > 0:
image = output.images[0]
buffered = BytesIO()
try:
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
end_time = time.time()
print(f"[{process_id}] Image bytes length for {prompt_name}: {len(image_bytes)}")
print(f"[{process_id}] Time taken for {prompt_name}: {end_time - start_time} seconds")
return image_bytes
except Exception as e:
print(f"[{process_id}] Error saving image for {prompt_name}: {e}")
return None
else:
raise Exception(f"[{process_id}] No images returned by the model for {prompt_name}.")
except Exception as e:
print(f"[{process_id}] Error generating image for {prompt_name}: {e}")
return None
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
prompts = []
for paragraph_number, sentences in sentence_mapping.items():
combined_sentence = " ".join(sentences)
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
prompts.append((paragraph_number, prompt))
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
num_prompts = len(prompts)
num_actors = min(num_prompts, 20) # Limit to a maximum of 20 actors
model_actors = [ModelActor.remote() for _ in range(num_actors)]
tasks = [model_actors[i % num_actors].generate_image.remote(prompt, f"Prompt {paragraph_number}") for i, (paragraph_number, prompt) in enumerate(prompts)]
print("Tasks created for image generation.")
responses = await asyncio.gather(*[asyncio.to_thread(ray.get, task) for task in tasks])
print("Responses received from image generation tasks.")
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
print(f"Images generated: {images}")
return images
def process_prompt(sentence_mapping, character_dict, selected_style):
print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
print("Event loop created.")
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
print(f"process_prompt completed with return value: {cmpt_return}")
return cmpt_return
gradio_interface = gr.Interface(
fn=process_prompt,
inputs=[
gr.JSON(label="Sentence Mapping"),
gr.JSON(label="Character Dict"),
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
],
outputs="json"
)
if __name__ == "__main__":
print("Launching Gradio interface...")
gradio_interface.launch()
print("Gradio interface launched.")