Spaces:
Runtime error
Runtime error
import os | |
import asyncio | |
from generate_prompts import generate_prompt | |
from diffusers import AutoPipelineForText2Image | |
from io import BytesIO | |
import gradio as gr | |
# Load the model once outside of the function | |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") | |
async def generate_image(prompt, prompt_name): | |
try: | |
print(f"Generating response for {prompt_name}") | |
output = await model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0) | |
# Check if the model returned images | |
if isinstance(output.images, list) and len(output.images) > 0: | |
image = output.images[0] | |
buffered = BytesIO() | |
try: | |
image.save(buffered, format="JPEG") | |
image_bytes = buffered.getvalue() | |
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}") | |
return image_bytes | |
except Exception as e: | |
print(f"Error saving image for {prompt_name}: {e}") | |
return None | |
else: | |
raise Exception(f"No images returned by the model for {prompt_name}.") | |
except Exception as e: | |
print(f"Error generating image for {prompt_name}: {e}") | |
return None | |
async def queue_api_calls(sentence_mapping, character_dict, selected_style): | |
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}') | |
prompts = [] | |
# Generate prompts for each paragraph | |
for paragraph_number, sentences in sentence_mapping.items(): | |
combined_sentence = " ".join(sentences) | |
print(f'combined_sentence: {combined_sentence}, character_dict: {character_dict}, selected_style: {selected_style}') | |
prompt = generate_prompt(sentence_mapping, combined_sentence, character_dict, selected_style) | |
prompts.append((paragraph_number, prompt)) | |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") | |
# Generate images for each prompt in parallel | |
tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts] | |
responses = await asyncio.gather(*tasks) | |
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)} | |
return images | |
def process_prompt(sentence_mapping, character_dict, selected_style): | |
try: | |
# See if there is a loop already running. If there is, reuse it. | |
loop = asyncio.get_running_loop() | |
except RuntimeError: | |
# Create new event loop if one is not running | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
# This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set. | |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style)) | |
return cmpt_return | |
# Gradio interface with high concurrency limit | |
gradio_interface = gr.Interface( | |
fn=process_prompt, | |
inputs=[ | |
gr.JSON(label="Sentence Mapping"), | |
gr.JSON(label="Character Dict"), | |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") | |
], | |
outputs="json" | |
) | |
if __name__ == "__main__": | |
gradio_interface.launch() | |