text2image_1 / app.py
RanM's picture
Update app.py
9b06634 verified
raw
history blame
2.22 kB
import gradio as gr
from diffusers import AutoPipelineForText2Image, EulerAncestralDiscreteScheduler
from generate_propmts import generate_prompt
from PIL import Image
import asyncio
import traceback
# Load the model with a different scheduler
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
model.scheduler = DPMSolverMultistepScheduler.from_config(model.scheduler.config) # Changed scheduler
async def generate_image(prompt):
try:
num_inference_steps = 5 # You can adjust this
output = await asyncio.to_thread(
model,
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=0.0,
output_type="pil"
)
if output.images:
return output.images[0]
else:
raise Exception("No images returned by the model.")
except Exception as e:
print(f"Error generating image: {e}")
traceback.print_exc()
return None
async def inference(sentence_mapping, character_dict, selected_style):
images = []
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
prompts = []
# Generate prompts for each paragraph
for paragraph_number, sentences in sentence_mapping.items():
combined_sentence = " ".join(sentences)
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
prompts.append(prompt)
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
# Use asyncio.gather to run generate_image in parallel
tasks = [generate_image(prompt) for prompt in prompts]
images = await asyncio.gather(*tasks)
# Filter out None values
images = [image for image in images if image is not None]
return images
gradio_interface = gr.Interface(
fn=inference,
inputs=[
gr.JSON(label="Sentence Mapping"),
gr.JSON(label="Character Dict"),
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
],
outputs=gr.Gallery(label="Generated Images")
)
if __name__ == "__main__":
gradio_interface.launch()