Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import AutoPipelineForText2Image | |
import base64 | |
from io import BytesIO | |
from generate_propmts import generate_prompt | |
from concurrent.futures import ThreadPoolExecutor | |
# Load the model once outside of the function | |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") | |
def generate_image(text, sentence_mapping, character_dict, selected_style): | |
try: | |
prompt, _ = generate_prompt(text, sentence_mapping, character_dict, selected_style) | |
image = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0] | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
return img_str | |
except Exception as e: | |
print(f"Error generating image: {e}") | |
return None | |
def inference(text, sentence_mapping, character_dict, selected_style): | |
images = {} | |
# Here we assume `sentence_mapping` is a dictionary where keys are paragraph numbers and values are lists of sentences | |
grouped_sentences = sentence_mapping | |
with ThreadPoolExecutor() as executor: | |
futures = {} | |
for paragraph_number, sentences in grouped_sentences.items(): | |
combined_sentence = " ".join(sentences) | |
futures[paragraph_number] = executor.submit(generate_image, combined_sentence, sentence_mapping, character_dict, selected_style) | |
for paragraph_number, future in futures.items(): | |
images[paragraph_number] = future.result() | |
return images | |
gradio_interface = gr.Interface( | |
fn=inference, | |
inputs="text", | |
outputs="text" | |
) | |
if __name__ == "__main__": | |
gradio_interface.launch() | |