text2image_1 / app.py
RanM's picture
Update app.py
8a555c8 verified
raw
history blame
2.77 kB
import gradio as gr
import torch
from diffusers import AutoPipelineForText2Image
from io import BytesIO
from generate_propmts import generate_prompt
from concurrent.futures import ThreadPoolExecutor
import json
# Load the model once outside of the function
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
# Helper function to truncate prompt to fit the model's maximum sequence length
def truncate_prompt(prompt, max_length=77):
tokens = prompt.split()
if len(tokens) > max_length:
return ' '.join(tokens[:max_length])
print("len of tokens:", len(tokens))
print("len of tokens:", len(prompt))
return prompt
def generate_image(text, sentence_mapping, character_dict, selected_style):
try:
prompt, _ = generate_prompt(text, sentence_mapping, character_dict, selected_style)
print(f"Generated prompt: {prompt}")
# Truncate prompt if necessary
prompt = truncate_prompt(prompt)
print(f"truncate_prompt: {prompt}")
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
print(f"Model output: {output}")
print("len of output:", len(output))
# Check if the model returned images
if output.images:
image = output.images[0]
buffered = BytesIO()
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
return image_bytes
else:
raise Exception("No images returned by the model.")
except Exception as e:
print(f"Error generating image: {e}")
return None
def inference(sentence_mapping, character_dict, selected_style):
images = {}
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
# Here we assume `sentence_mapping` is a dictionary where keys are paragraph numbers and values are lists of sentences
grouped_sentences = sentence_mapping
with ThreadPoolExecutor() as executor:
futures = {}
for paragraph_number, sentences in grouped_sentences.items():
combined_sentence = " ".join(sentences)
futures[paragraph_number] = executor.submit(generate_image, combined_sentence, sentence_mapping, character_dict, selected_style)
for paragraph_number, future in futures.items():
images[paragraph_number] = future.result()
return images
gradio_interface = gr.Interface(
fn=inference,
inputs=[
gr.JSON(label="Sentence Mapping"),
gr.JSON(label="Character Dict"),
gr.Dropdown(["Style 1", "Style 2", "Style 3"], label="Selected Style")
],
outputs="json"
)
if __name__ == "__main__":
gradio_interface.launch()