Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import AutoPipelineForText2Image | |
from io import BytesIO | |
from generate_propmts import generate_prompt | |
from concurrent.futures import ThreadPoolExecutor | |
import json | |
# Load the model once outside of the function | |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") | |
# Helper function to truncate prompt to fit the model's maximum sequence length | |
def truncate_prompt(prompt, max_length=77): | |
tokens = prompt.split() | |
if len(tokens) > max_length: | |
return ' '.join(tokens[:max_length]) | |
print("len of tokens:", len(tokens)) | |
print("len of tokens:", len(prompt)) | |
return prompt | |
def generate_image(text, sentence_mapping, character_dict, selected_style): | |
try: | |
prompt, _ = generate_prompt(text, sentence_mapping, character_dict, selected_style) | |
print(f"Generated prompt: {prompt}") | |
# Truncate prompt if necessary | |
prompt = truncate_prompt(prompt) | |
print(f"truncate_prompt: {prompt}") | |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0) | |
print(f"Model output: {output}") | |
print("len of output:", len(output)) | |
# Check if the model returned images | |
if output.images: | |
image = output.images[0] | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
image_bytes = buffered.getvalue() | |
return image_bytes | |
else: | |
raise Exception("No images returned by the model.") | |
except Exception as e: | |
print(f"Error generating image: {e}") | |
return None | |
def inference(sentence_mapping, character_dict, selected_style): | |
images = {} | |
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}') | |
# Here we assume `sentence_mapping` is a dictionary where keys are paragraph numbers and values are lists of sentences | |
grouped_sentences = sentence_mapping | |
with ThreadPoolExecutor() as executor: | |
futures = {} | |
for paragraph_number, sentences in grouped_sentences.items(): | |
combined_sentence = " ".join(sentences) | |
futures[paragraph_number] = executor.submit(generate_image, combined_sentence, sentence_mapping, character_dict, selected_style) | |
for paragraph_number, future in futures.items(): | |
images[paragraph_number] = future.result() | |
return images | |
gradio_interface = gr.Interface( | |
fn=inference, | |
inputs=[ | |
gr.JSON(label="Sentence Mapping"), | |
gr.JSON(label="Character Dict"), | |
gr.Dropdown(["Style 1", "Style 2", "Style 3"], label="Selected Style") | |
], | |
outputs="json" | |
) | |
if __name__ == "__main__": | |
gradio_interface.launch() | |