Spaces:
Runtime error
Runtime error
import gradio as gr | |
from diffusers import AutoPipelineForText2Image | |
from generate_propmts import generate_prompt | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from PIL import Image | |
import traceback | |
# Load the model once outside of the function | |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") | |
# Create a thread-local storage for step indices | |
scheduler_step_storage = threading.local() | |
def generate_image(prompt): | |
try: | |
# Initialize step index per thread if not already set | |
if not hasattr(scheduler_step_storage, 'step'): | |
scheduler_step_storage.step = 0 | |
# Use the thread-local step index | |
output = model( | |
prompt=prompt, | |
num_inference_steps=1, # Add a sensible default for inference steps | |
guidance_scale=0.0, | |
output_type="pil" # Directly get PIL Image objects | |
) | |
# Increment the step index after generating the image | |
scheduler_step_storage.step += 1 | |
# Check for output validity and return | |
if output.images: | |
return output.images[0] | |
else: | |
raise Exception("No images returned by the model.") | |
except Exception as e: | |
print(f"Error generating image: {e}") | |
traceback.print_exc() | |
return None # Return None on error to handle it gracefully in the UI | |
def inference(sentence_mapping, character_dict, selected_style): | |
images = [] | |
print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}') | |
prompts = [] | |
# Generate prompts for each paragraph | |
for paragraph_number, sentences in sentence_mapping.items(): | |
combined_sentence = " ".join(sentences) | |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) | |
prompts.append(prompt) | |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") | |
with ThreadPoolExecutor() as executor: | |
futures = [executor.submit(generate_image, prompt) for prompt in prompts] | |
for future in as_completed(futures): | |
try: | |
image = future.result() | |
if image: | |
images.append(image) | |
except Exception as e: | |
print(f"Error processing prompt: {e}") | |
traceback.print_exc() | |
return images | |
gradio_interface = gr.Interface( | |
fn=inference, | |
inputs=[ | |
gr.JSON(label="Sentence Mapping"), | |
gr.JSON(label="Character Dict"), | |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") | |
], | |
outputs=gr.Gallery(label="Generated Images") | |
) | |
if __name__ == "__main__": | |
gradio_interface.launch() | |