Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import DiffusionPipeline | |
import base64 | |
from io import BytesIO | |
def load_amused_model(): | |
# pipeline = DiffusionPipeline.from_pretrained("Bakanayatsu/ponyDiffusion-V6-XL-Turbo-DPO") | |
return DiffusionPipeline.from_pretrained("Bakanayatsu/ponyDiffusion-V6-XL-Turbo-DPO") | |
# Generate image from prompt using AmusedPipeline | |
def generate_image(prompt): | |
try: | |
pipe = load_amused_model() | |
generator = torch.Generator().manual_seed(8) # Create a generator for reproducibility | |
image = pipe(prompt, generator=generator).images[0] # Generate image from prompt | |
return image, None | |
except Exception as e: | |
return None, str(e) | |
def inference(prompt): | |
print(f"Received prompt: {prompt}") # Debugging statement | |
image, error = generate_image(prompt) | |
if error: | |
print(f"Error generating image: {error}") # Debugging statement | |
return "Error: " + error | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
return img_str | |
gradio_interface = gr.Interface( | |
fn=inference, | |
inputs="text", | |
outputs="text" # Change output to text to return base64 string | |
) | |
if __name__ == "__main__": | |
gradio_interface.launch() | |