Spaces:
Runtime error
Runtime error
# Face Detection-Based AI Automation of Lab Tests | |
# UI: Clean table, multilingual summary, PDF-ready | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
import mediapipe as mp | |
from fpdf import FPDF | |
import os | |
mp_face_mesh = mp.solutions.face_mesh | |
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) | |
def estimate_heart_rate(frame, landmarks): | |
h, w, _ = frame.shape | |
forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]] | |
mask = np.zeros((h, w), dtype=np.uint8) | |
pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32) | |
cv2.fillConvexPoly(mask, pts, 255) | |
green_channel = cv2.split(frame)[1] | |
mean_intensity = cv2.mean(green_channel, mask=mask)[0] | |
heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi)) | |
return heart_rate | |
def estimate_spo2_rr(heart_rate): | |
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2))) | |
rr = int(12 + abs(heart_rate % 5 - 2)) | |
return spo2, rr | |
def get_risk_color(value, normal_range): | |
low, high = normal_range | |
if value < low: | |
return ("Low", "🔻", "#FFCCCC") | |
elif value > high: | |
return ("High", "🔺", "#FFE680") | |
else: | |
return ("Normal", "✅", "#CCFFCC") | |
def generate_pdf_report(image, results_dict, summary_text): | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Arial", "B", 16) | |
pdf.cell(0, 10, "SL Diagnostics - Face Scan AI Lab Report", ln=True, align='C') | |
if image is not None: | |
img_path = "patient_face.jpg" | |
cv2.imwrite(img_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) | |
pdf.image(img_path, x=80, y=25, w=50) | |
os.remove(img_path) | |
pdf.ln(60) | |
pdf.set_font("Arial", "B", 12) | |
pdf.cell(0, 10, "Results Summary", ln=True) | |
pdf.set_font("Arial", "", 10) | |
for key, val in results_dict.items(): | |
if isinstance(val, (int, float)): | |
pdf.cell(0, 8, f"{key}: {val}", ln=True) | |
pdf.ln(5) | |
pdf.set_font("Arial", "B", 12) | |
pdf.cell(0, 10, "AI Summary (English)", ln=True) | |
pdf.set_font("Arial", "", 10) | |
for line in summary_text.split("<li>"): | |
if "</li>" in line: | |
clean = line.split("</li>")[0].strip() | |
pdf.multi_cell(0, 8, f"- {clean}") | |
output_path = "/mnt/data/SL_Diagnostics_Face_Scan_Report.pdf" | |
pdf.output(output_path) | |
return output_path | |