Spaces:
Sleeping
Sleeping
# Face Detection-Based AI Automation of Lab Tests | |
# Gradio App with Mobile-Responsive UI and Risk-Level Coloring | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
import mediapipe as mp | |
mp_face_mesh = mp.solutions.face_mesh | |
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) | |
def estimate_heart_rate(frame, landmarks): | |
h, w, _ = frame.shape | |
forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]] | |
mask = np.zeros((h, w), dtype=np.uint8) | |
pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32) | |
cv2.fillConvexPoly(mask, pts, 255) | |
green_channel = cv2.split(frame)[1] | |
mean_intensity = cv2.mean(green_channel, mask=mask)[0] | |
heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi)) | |
return heart_rate | |
def estimate_spo2_rr(heart_rate): | |
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2))) | |
rr = int(12 + abs(heart_rate % 5 - 2)) | |
return spo2, rr | |
def get_risk_color(value, normal_range): | |
low, high = normal_range | |
if value < low: | |
return "🔻 LOW" | |
elif value > high: | |
return "🔺 HIGH" | |
else: | |
return "✅ Normal" | |
def generate_flags_extended(params): | |
hb, wbc, platelets, iron, ferritin, tibc, bilirubin, creatinine, tsh, cortisol, fbs, hba1c = params | |
flags = [] | |
if hb < 13.5: | |
flags.append("Hemoglobin Low - Possible Anemia") | |
if wbc < 4.0 or wbc > 11.0: | |
flags.append("Abnormal WBC Count - Possible Infection") | |
if platelets < 150: | |
flags.append("Platelet Drop Risk - Bruising Possible") | |
if iron < 60: | |
flags.append("Iron Deficiency Detected") | |
if ferritin < 30: | |
flags.append("Low Ferritin - Iron Store Low") | |
if tibc > 400: | |
flags.append("High TIBC - Iron Absorption Issue") | |
if bilirubin > 1.2: | |
flags.append("Jaundice Detected - Elevated Bilirubin") | |
if creatinine > 1.2: | |
flags.append("Kidney Function Concern - High Creatinine") | |
if tsh < 0.4 or tsh > 4.0: | |
flags.append("Thyroid Imbalance - Check TSH") | |
if cortisol < 5 or cortisol > 25: | |
flags.append("Stress Hormone Abnormality - Cortisol") | |
if fbs > 110: | |
flags.append("High Fasting Blood Sugar") | |
if hba1c > 5.7: | |
flags.append("Elevated HbA1c - Diabetes Risk") | |
flags.append("Mood / Stress analysis requires separate behavioral model") | |
return flags | |
def analyze_face(image): | |
if image is None: | |
return {}, None | |
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
result = face_mesh.process(frame_rgb) | |
if result.multi_face_landmarks: | |
landmarks = result.multi_face_landmarks[0].landmark | |
heart_rate = estimate_heart_rate(frame_rgb, landmarks) | |
spo2, rr = estimate_spo2_rr(heart_rate) | |
hb, wbc, platelets = 12.3, 6.4, 210 | |
iron, ferritin, tibc = 55, 45, 340 | |
bilirubin, creatinine = 1.5, 1.3 | |
tsh, cortisol = 2.5, 18 | |
fbs, hba1c = 120, 6.2 | |
flags = generate_flags_extended([hb, wbc, platelets, iron, ferritin, tibc, bilirubin, creatinine, tsh, cortisol, fbs, hba1c]) | |
sections = { | |
"🩸 Hematology": [ | |
f"Hemoglobin (Hb): {hb} g/dL - {get_risk_color(hb, (13.5, 17.5))}", | |
f"WBC Count: {wbc} x10^3/uL - {get_risk_color(wbc, (4.0, 11.0))}", | |
f"Platelet Count: {platelets} x10^3/uL - {get_risk_color(platelets, (150, 450))}" | |
], | |
"🧬 Iron & Liver Panel": [ | |
f"Iron: {iron} µg/dL - {get_risk_color(iron, (60, 170))}", | |
f"Ferritin: {ferritin} ng/mL - {get_risk_color(ferritin, (30, 300))}", | |
f"TIBC: {tibc} µg/dL - {get_risk_color(tibc, (250, 400))}", | |
f"Bilirubin: {bilirubin} mg/dL - {get_risk_color(bilirubin, (0.3, 1.2))}" | |
], | |
"🧪 Kidney, Thyroid & Stress": [ | |
f"Creatinine: {creatinine} mg/dL - {get_risk_color(creatinine, (0.6, 1.2))}", | |
f"TSH: {tsh} µIU/mL - {get_risk_color(tsh, (0.4, 4.0))}", | |
f"Cortisol: {cortisol} µg/dL - {get_risk_color(cortisol, (5, 25))}" | |
], | |
"🧁 Metabolic Panel": [ | |
f"Fasting Blood Sugar: {fbs} mg/dL - {get_risk_color(fbs, (70, 110))}", | |
f"HbA1c: {hba1c}% - {get_risk_color(hba1c, (4.0, 5.7))}" | |
], | |
"❤️ Vital Signs": [ | |
f"SpO2: {spo2}% - {get_risk_color(spo2, (95, 100))}", | |
f"Heart Rate: {heart_rate} bpm - {get_risk_color(heart_rate, (60, 100))}", | |
f"Respiratory Rate: {rr} breaths/min - {get_risk_color(rr, (12, 20))}", | |
"Blood Pressure: Low (simulated)" | |
], | |
"⚠️ Risk Flags": flags | |
} | |
return sections, frame_rgb | |
else: | |
return {"⚠️ Error": ["Face not detected"]}, None | |
# Mobile-optimized UI with styled labels | |
demo = gr.Blocks(css=""" | |
@media only screen and (max-width: 768px) { | |
.gr-block.gr-column { width: 100% !important; } | |
} | |
""") | |
with demo: | |
gr.Markdown(""" | |
# 🧠 Face-Based AI Lab Test Inference | |
Upload a clear face image to simulate categorized lab reports with visual grouping. | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(type="numpy", label="📸 Upload a Face Image") | |
submit_btn = gr.Button("🔍 Analyze Now") | |
with gr.Column(scale=2): | |
accordion_output = gr.Accordion("📂 Diagnostic Summary", open=True) | |
with accordion_output: | |
result_html = gr.HighlightedText(label="📊 Grouped Report", combine_adjacent=True) | |
result_image = gr.Image(label="🧍 Annotated Face Scan") | |
def format_report(sections): | |
lines = [] | |
for title, values in sections.items(): | |
lines.append((f"{title}",)) | |
for item in values: | |
lines.append((f" - {item}",)) | |
return lines | |
submit_btn.click( | |
fn=analyze_face, | |
inputs=image_input, | |
outputs=[result_html, result_image], | |
preprocess=False, | |
postprocess=False, | |
_js="(data) => [data]" | |
).then( | |
fn=format_report, | |
inputs=None, | |
outputs=result_html | |
) | |
gr.Markdown("---\n✅ Optimized for Mobile · Risk Indicators: 🔻 Low, 🔺 High, ✅ Normal") | |
demo.launch() | |