AI-LAB-4 / app.py
Rammohan0504's picture
Update app.py
f957621 verified
raw
history blame
22.6 kB
import os
import gradio as gr
import cv2
import numpy as np
import mediapipe as mp
from sklearn.linear_model import LinearRegression
import random
import base64
import joblib
from datetime import datetime
import shutil
import pdfkit
import atexit
import glob
# Cleanup temporary files on exit
def cleanup_temp_files():
for temp_file in glob.glob("/tmp/Health_Report_*.pdf"):
os.remove(temp_file)
atexit.register(cleanup_temp_files)
# Initialize the face mesh model
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True,
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5)
# Functions for feature extraction
def extract_features(image, landmarks):
red_channel = image[:, :, 2]
green_channel = image[:, :, 1]
blue_channel = image[:, :, 0]
red_percent = 100 * np.mean(red_channel) / 255
green_percent = 100 * np.mean(green_channel) / 255
blue_percent = 100 * np.mean(blue_channel) / 255
return [red_percent, green_percent, blue_percent]
def train_model(output_range):
X = [[
random.uniform(0.2, 0.5),
random.uniform(0.05, 0.2),
random.uniform(0.05, 0.2),
random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5)
] for _ in range(100)]
y = [random.uniform(*output_range) for _ in X]
model = LinearRegression().fit(X, y)
return model
# Load models
try:
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
spo2_model = joblib.load("spo2_model_simulated.pkl")
hr_model = joblib.load("heart_rate_model.pkl")
except FileNotFoundError:
print("Error: One or more .pkl model files are missing. Please upload them.")
exit(1)
models = {
"Hemoglobin": hemoglobin_model,
"WBC Count": train_model((4.0, 11.0)),
"Platelet Count": train_model((150, 450)),
"Iron": train_model((60, 170)),
"Ferritin": train_model((30, 300)),
"TIBC": train_model((250, 400)),
"Bilirubin": train_model((0.3, 1.2)),
"Creatinine": train_model((0.6, 1.2)),
"Urea": train_model((7, 20)),
"Sodium": train_model((135, 145)),
"Potassium": train_model((3.5, 5.1)),
"TSH": train_model((0.4, 4.0)),
"Cortisol": train_model((5, 25)),
"FBS": train_model((70, 110)),
"HbA1c": train_model((4.0, 5.7)),
"Albumin": train_model((3.5, 5.5)),
"BP Systolic": train_model((90, 120)),
"BP Diastolic": train_model((60, 80)),
"Temperature": train_model((97, 99))
}
# Helper function for risk level color coding
def get_risk_color(value, normal_range):
low, high = normal_range
if value < low:
return ("Low", "🔻", "#fff3cd")
elif value > high:
return ("High", "🔺", "#f8d7da")
else:
return ("Normal", "✅", "#d4edda")
# Function to build table for test results
def build_table(title, rows):
color_map = {
"Normal": "#28a745",
"High": "#dc3545",
"Low": "#ffc107"
}
html = (
f'<div style="margin-bottom: 25px; border-radius: 8px; overflow: hidden; border: 1px solid #e0e0e0;">'
f'<div style="background: linear-gradient(135deg, #f5f7fa, #c3cfe2); padding: 12px 16px; border-bottom: 1px solid #e0e0e0;">'
f'<h4 style="margin: 0; color: #2c3e50; font-size: 16px; font-weight: 600;">{title}</h4>'
f'</div>'
f'<table style="width:100%; border-collapse:collapse; background: white;">'
f'<thead><tr style="background:#f8f9fa;"><th style="padding:12px 8px;border-bottom:2px solid #dee2e6;color:#495057;font-weight:600;text-align:left;font-size:13px;">Test</th><th style="padding:12px 8px;border-bottom:2px solid #dee2e6;color:#495057;font-weight:600;text-align:center;font-size:13px;">Result</th><th style="padding:12px 8px;border-bottom:2px solid #dee2e6;color:#495057;font-weight:600;text-align:center;font-size:13px;">Range</th><th style="padding:12px 8px;border-bottom:2px solid #dee2e6;color:#495057;font-weight:600;text-align:center;font-size:13px;">Level</th></tr></thead><tbody>'
)
for i, (label, value, ref) in enumerate(rows):
level, icon, bg = get_risk_color(value, ref)
row_bg = "#f8f9fa" if i % 2 == 0 else "white"
if level != "Normal":
row_bg = bg
if "Count" in label or "Platelet" in label:
value_str = f"{value:.0f}"
else:
value_str = f"{value:.2f}"
html += f'<tr style="background:{row_bg};border-bottom:1px solid #e9ecef;"><td style="padding:10px 8px;color:#2c3e50;font-weight:500;">{label}</td><td style="padding:10px 8px;text-align:center;color:#2c3e50;font-weight:600;">{value_str}</td><td style="padding:10px 8px;text-align:center;color:#6c757d;font-size:12px;">{ref[0]} - {ref[1]}</td><td style="padding:10px 8px;text-align:center;font-weight:600;color:{color_map[level]};">{icon} {level}</td></tr>'
html += '</tbody></table></div>'
return html
# Function to save the health report to PDF
def save_results_to_pdf(profile_image_base64, test_results, summary, patient_name, patient_age, patient_gender, patient_id, filename):
try:
# Generate HTML content
current_date = datetime.now().strftime("%B %d, %Y")
health_card_html = f"""
<!DOCTYPE html>
<html>
<head>
<style>
body {{ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; color: #1a1a1a; }}
#health-card {{ border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; }}
.header {{ background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0; display: flex; align-items: center; }}
.header-title {{ background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px; }}
.header-title h3 {{ margin: 0; color: white; font-size: 16px; font-weight: 600; }}
.header-date {{ margin-left: auto; text-align: right; color: #666; font-size: 12px; }}
.profile {{ display: flex; align-items: center; }}
.profile img {{ width: 90px; height: 90px; border-radius: 50%; margin-right: 20px; border: 3px solid #fff; box-shadow: 0 4px 12px rgba(0,0,0,0.1); }}
.results {{ background-color: rgba(255, 255, 255, 0.95); border-radius: 12px; padding: 25px; margin-bottom: 25px; border: 1px solid #e0e0e0; }}
.summary {{ background-color: rgba(255, 255, 255, 0.95); padding: 20px; border-radius: 12px; border: 1px solid #e0e0e0; margin-bottom: 25px; }}
.summary h4 {{ margin: 0 0 15px 0; color: #2c3e50; font-size: 18px; font-weight: 600; }}
.buttons {{ display: flex; gap: 15px; justify-content: center; flex-wrap: wrap; }}
button:disabled {{ padding: 12px 24px; background: #ccc; color: white; border: none; border-radius: 8px; cursor: not-allowed; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }}
button {{ padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3); }}
@media print {{ .gradio-container {{ display: block; }} #health-card {{ display: block; }} }}
</style>
</head>
<body>
<div id="health-card">
<div class="header">
<div class="header-title"><h3>HEALTH CARD</h3></div>
<div class="header-date">
<div>Report Date: {current_date}</div>
{f'<div>Patient ID: {patient_id}</div>' if patient_id else ''}
</div>
</div>
<div class="profile">
<img src="data:image/png;base64,{profile_image_base64}" alt="Profile">
<div>
<h2>{patient_name if patient_name else 'Lab Test Results'}</h2>
<p>{f'Age: {patient_age} | Gender: {patient_gender}' if patient_age and patient_gender else 'AI-Generated Health Analysis'}</p>
<p>Face-Based Health Analysis Report</p>
</div>
</div>
<div class="results">
{test_results['Hematology']}
{test_results['Iron Panel']}
{test_results['Liver & Kidney']}
{test_results['Electrolytes']}
{test_results['Vitals']}
</div>
<div class="summary">
<h4>📝 Summary & Recommendations</h4>
<div>{summary}</div>
</div>
<div class="buttons">
<button disabled>📥 Download Report</button>
<button>📞 Find Labs Near Me</button>
</div>
</div>
</body>
</html>
"""
# Save HTML to a temporary file
html_temp_path = "/tmp/health_card.html"
with open(html_temp_path, "w", encoding="utf-8") as f:
f.write(health_card_html)
# Convert HTML to PDF using pdfkit
pdfkit.from_file(html_temp_path, filename, options={"quiet": ""})
print(f"PDF generated successfully at: {filename}") # Debug log
# Move to /tmp for Gradio access
temp_pdf_path = "/tmp/" + os.path.basename(filename)
shutil.copy(filename, temp_pdf_path)
if os.path.exists(temp_pdf_path) and os.access(temp_pdf_path, os.R_OK):
return f"PDF saved successfully as {filename}", temp_pdf_path
else:
return "Error: PDF file not accessible.", None
except Exception as e:
print(f"Error saving PDF: {str(e)}") # Debug log
return f"Error saving PDF: {str(e)}", None
# Build health card layout
def build_health_card(profile_image, test_results, summary, pdf_filepath, patient_name="", patient_age="", patient_gender="", patient_id=""):
from datetime import datetime
current_date = datetime.now().strftime("%B %d, %Y")
pdf_filename = os.path.basename(pdf_filepath) if pdf_filepath else "health_report.pdf"
html = f"""
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
<div style="background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
<div style="display: flex; align-items: center; margin-bottom: 15px;">
<div style="background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px;">
<h3 style="margin: 0; font-size: 16px; color: white; font-weight: 600;">HEALTH CARD</h3>
</div>
<div style="margin-left: auto; text-align: right; color: #666; font-size: 12px;">
<div>Report Date: {current_date}</div>
{f'<div>Patient ID: {patient_id}</div>' if patient_id else ''}
</div>
</div>
<div style="display: flex; align-items: center;">
<img src="data:image/png;base64,{profile_image}" alt="Profile" style="width: 90px; height: 90px; border-radius: 50%; margin-right: 20px; border: 3px solid #fff; box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
<div>
<h2 style="margin: 0; font-size: 28px; color: #2c3e50; font-weight: 700;">{patient_name if patient_name else 'Lab Test Results'}</h2>
<p style="margin: 4px 0 0 0; color: #666; font-size: 14px;">{f'Age: {patient_age} | Gender: {patient_gender}' if patient_age and patient_gender else 'AI-Generated Health Analysis'}</p>
<p style="margin: 4px 0 0 0; color: #888; font-size: 12px;">Face-Based Health Analysis Report</p>
</div>
</div>
</div>
<div style="background-color: rgba(255, 255, 255, 0.95); border-radius: 12px; padding: 25px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
{test_results['Hematology']}
{test_results['Iron Panel']}
{test_results['Liver & Kidney']}
{test_results['Electrolytes']}
{test_results['Vitals']}
</div>
<div style="background-color: rgba(255, 255, 255, 0.95); padding: 20px; border-radius: 12px; border: 1px solid #e0e0e0; margin-bottom: 25px;">
<h4 style="margin: 0 0 15px 0; color: #2c3e50; font-size: 18px; font-weight: 600;">📝 Summary & Recommendations</h4>
<div style="color: #444; line-height: 1.6;">
{summary}
</div>
</div>
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
<button disabled style="padding: 12px 24px; background: #ccc; color: white; border: none; border-radius: 8px; cursor: not-allowed; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);">
📥 Download Report
</button>
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
📞 Find Labs Near Me
</button>
</div>
</div>
<style>
@media print {{
/* Hide input sections during print */
.gradio-container {{ display: block; }}
/* Keep only the health card visible */
#health-card {{ display: block; }}
}}
</style>
"""
return html
# Initialize global variable for patient details
current_patient_details = {'name': '', 'age': '', 'gender': '', 'id': ''}
# Modified analyze_face function
def analyze_face(input_data):
if isinstance(input_data, str): # Video input (file path in Replit)
cap = cv2.VideoCapture(input_data)
if not cap.isOpened():
return "<div style='color:red;'>⚠️ Error: Could not open video.</div>", None
ret, frame = cap.read()
cap.release()
if not ret:
return "<div style='color:red;'>⚠️ Error: Could not read video frame.</div>", None
else: # Image input
frame = input_data
if frame is None:
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
# Resize image to reduce processing time
frame = cv2.resize(frame, (640, 480))
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
result = face_mesh.process(frame_rgb)
if not result.multi_face_landmarks:
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
landmarks = result.multi_face_landmarks[0].landmark
features = extract_features(frame_rgb, landmarks)
test_values = {}
for label in models:
if label == "Hemoglobin":
prediction = models[label].predict([features])[0]
test_values[label] = prediction
else:
value = models[label].predict([[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
test_values[label] = value
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
green_std = np.std(frame_rgb[:, :, 1]) / 255
brightness_std = np.std(gray) / 255
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[100:150, 100:150].size else 0.5
hr_features = [brightness_std, green_std, tone_index]
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
skin_patch = frame_rgb[100:150, 100:150]
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
brightness_variation = np.std(cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)) / 255
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
spo2 = spo2_model.predict([spo2_features])[0]
rr = int(12 + abs(heart_rate % 5 - 2))
test_values.update({
"SpO2": spo2,
"Heart Rate": heart_rate,
"Respiratory Rate": rr
})
test_results = {
"Hematology": build_table("🩸 Hematology", [("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
("Platelet Count", test_values["Platelet Count"], (150, 450))]),
"Iron Panel": build_table("🧬 Iron Panel", [("Iron", test_values["Iron"], (60, 170)),
("Ferritin", test_values["Ferritin"], (30, 300)),
("TIBC", test_values["TIBC"], (250, 400))]),
"Liver & Kidney": build_table("🧬 Liver & Kidney", [("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)),
("Creatinine", test_values["Creatinine"], (0.6, 1.2)),
("Urea", test_values["Urea"], (7, 20))]),
"Electrolytes": build_table("🧪 Electrolytes", [("Sodium", test_values["Sodium"], (135, 145)),
("Potassium", test_values["Potassium"], (3.5, 5.1))]),
"Vitals": build_table("❤️ Vitals", [("SpO2", test_values["SpO2"], (95, 100)),
("Heart Rate", test_values["Heart Rate"], (60, 100)),
("Respiratory Rate", test_values["Respiratory Rate"], (12, 20)),
("Temperature", test_values["Temperature"], (97, 99)),
("BP Systolic", test_values["BP Systolic"], (90, 120)),
("BP Diastolic", test_values["BP Diastolic"], (60, 80))])
}
summary = "<ul><li>Your hemoglobin is a bit low — this could mean mild anemia.</li><li>Low iron storage detected — consider an iron profile test.</li><li>Elevated bilirubin — possible jaundice. Recommend LFT.</li><li>High HbA1c — prediabetes indication. Recommend glucose check.</li><li>Low SpO₂ — suggest retesting with a pulse oximeter.</li></ul>"
_, buffer = cv2.imencode('.png', frame_rgb)
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
pdf_filename = f"Health_Report_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
pdf_result, pdf_filepath = save_results_to_pdf(
profile_image_base64,
test_results,
summary,
current_patient_details['name'],
current_patient_details['age'],
current_patient_details['gender'],
current_patient_details['id'],
pdf_filename
)
if pdf_filepath:
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
shutil.copy(pdf_filepath, temp_pdf_path)
if os.path.exists(temp_pdf_path) and os.access(temp_pdf_path, os.R_OK):
health_card_html = build_health_card(
profile_image_base64,
test_results,
summary,
temp_pdf_path,
current_patient_details['name'],
current_patient_details['age'],
current_patient_details['gender'],
current_patient_details['id']
)
return health_card_html, temp_pdf_path
else:
return "<div style='color:red;'>⚠️ Error: PDF file not accessible.</div>", None
return "<div style='color:red;'>⚠️ Error: Failed to generate PDF.</div>", None
# Modified route_inputs function
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
if mode == "Image" and image is None:
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
if mode == "Video" and video is None:
return "<div style='color:red;'>⚠️ Error: No video provided.</div>", None
global current_patient_details
current_patient_details = {
'name': patient_name,
'age': patient_age,
'gender': patient_gender,
'id': patient_id
}
health_card_html, pdf_file_path = analyze_face(image if mode == "Image" else video)
return health_card_html, pdf_file_path
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""# 🧠 Face-Based Lab Test AI Report (Video Mode)""")
with gr.Row():
with gr.Column():
gr.Markdown("### Patient Information")
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
patient_age = gr.Number(label="Age", value=25, minimum=1, maximum=120)
patient_gender = gr.Radio(label="Gender", choices=["Male", "Female", "Other"], value="Male")
patient_id = gr.Textbox(label="Patient ID", placeholder="Enter patient ID (optional)")
gr.Markdown("### Image/Video Input")
mode_selector = gr.Radio(label="Choose Input Mode",
choices=["Image", "Video"],
value="Image")
image_input = gr.Image(type="numpy", label="📸 Upload Face Image")
video_input = gr.Video(label="Upload Face Video",
sources=["upload", "webcam"])
submit_btn = gr.Button("🔍 Analyze")
with gr.Column():
result_html = gr.HTML(label="🧪 Health Report Table")
result_pdf = gr.File(label="Download Health Report PDF", interactive=False)
submit_btn.click(fn=route_inputs,
inputs=[mode_selector, image_input, video_input, patient_name, patient_age, patient_gender, patient_id],
outputs=[result_html, result_pdf])
# Launch Gradio for Replit
demo.launch(server_name="0.0.0.0", server_port=7860)