import gradio as gr
import cv2
import numpy as np
import mediapipe as mp
from sklearn.linear_model import LinearRegression
import random
import base64
import joblib
from fpdf import FPDF
# Initialize the face mesh model
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True,
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5)
# Functions for feature extraction
def extract_features(image, landmarks):
red_channel = image[:, :, 2]
green_channel = image[:, :, 1]
blue_channel = image[:, :, 0]
red_percent = 100 * np.mean(red_channel) / 255
green_percent = 100 * np.mean(green_channel) / 255
blue_percent = 100 * np.mean(blue_channel) / 255
return [red_percent, green_percent, blue_percent]
def train_model(output_range):
X = [[
random.uniform(0.2, 0.5),
random.uniform(0.05, 0.2),
random.uniform(0.05, 0.2),
random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5)
] for _ in range(100)]
y = [random.uniform(*output_range) for _ in X]
model = LinearRegression().fit(X, y)
return model
# Load models
try:
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
spo2_model = joblib.load("spo2_model_simulated.pkl")
hr_model = joblib.load("heart_rate_model.pkl")
except FileNotFoundError:
print(
"Error: One or more .pkl model files are missing. Please upload them.")
exit(1)
models = {
"Hemoglobin": hemoglobin_model,
"WBC Count": train_model((4.0, 11.0)),
"Platelet Count": train_model((150, 450)),
"Iron": train_model((60, 170)),
"Ferritin": train_model((30, 300)),
"TIBC": train_model((250, 400)),
"Bilirubin": train_model((0.3, 1.2)),
"Creatinine": train_model((0.6, 1.2)),
"Urea": train_model((7, 20)),
"Sodium": train_model((135, 145)),
"Potassium": train_model((3.5, 5.1)),
"TSH": train_model((0.4, 4.0)),
"Cortisol": train_model((5, 25)),
"FBS": train_model((70, 110)),
"HbA1c": train_model((4.0, 5.7)),
"Albumin": train_model((3.5, 5.5)),
"BP Systolic": train_model((90, 120)),
"BP Diastolic": train_model((60, 80)),
"Temperature": train_model((97, 99))
}
# Helper function for risk level color coding
def get_risk_color(value, normal_range):
low, high = normal_range
if value < low:
return ("Low", "๐ป", "#fff3cd")
elif value > high:
return ("High", "๐บ", "#f8d7da")
else:
return ("Normal", "โ
", "#d4edda")
# Function to build table for test results
def build_table(title, rows):
html = (
f'
'
f'
'
f'
{title}
'
f''
f'
'
f'Test | Result | Range | Level |
'
)
for i, (label, value, ref) in enumerate(rows):
level, icon, bg = get_risk_color(value, ref)
row_bg = "#f8f9fa" if i % 2 == 0 else "white"
if level != "Normal":
row_bg = bg
# Format the value with appropriate units
if "Count" in label or "Platelet" in label:
value_str = f"{value:.0f}"
else:
value_str = f"{value:.2f}"
html += f'{label} | {value_str} | {ref[0]} - {ref[1]} | {icon} {level} |
'
html += '
'
return html
# Generate PDF report using FPDF
def generate_pdf(report_html):
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
pdf.add_page()
pdf.set_font("Arial", size=12)
# Add a title
pdf.cell(200, 10, txt="Face-Based Health Report", ln=True, align="C")
# Write the report HTML content into the PDF
pdf.multi_cell(0, 10, txt=report_html)
# Save the PDF to a file
pdf_output = "/mnt/data/health_report.pdf"
pdf.output(pdf_output)
return pdf_output
# Build health card layout
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
from datetime import datetime
current_date = datetime.now().strftime("%B %d, %Y")
html = f"""
HEALTH CARD
Report Date: {current_date}
{f'
Patient ID: {patient_id}
' if patient_id else ''}
{patient_name if patient_name else "Lab Test Results"}
{f"Age: {patient_age} | Gender: {patient_gender}" if patient_age and patient_gender else "AI-Generated Health Analysis"}
Face-Based Health Analysis Report
{test_results['Hematology']}
{test_results['Iron Panel']}
{test_results['Liver & Kidney']}
{test_results['Electrolytes']}
{test_results['Vitals']}
๐ Summary & Recommendations
{summary}
"""
return html
# Initialize global variable for patient details
current_patient_details = {'name': '', 'age': '', 'gender': '', 'id': ''}
# Modified analyze_face function
def analyze_face(input_data):
if isinstance(input_data, str): # Video input (file path in Replit)
cap = cv2.VideoCapture(input_data)
if not cap.isOpened():
return "โ ๏ธ Error: Could not open video.
", None
ret, frame = cap.read()
cap.release()
if not ret:
return "โ ๏ธ Error: Could not read video frame.
", None
else: # Image input
frame = input_data
if frame is None:
return "โ ๏ธ Error: No image provided.
", None
# Resize image to reduce processing time
frame = cv2.resize(frame, (640, 480)) # Adjust resolution for Replit
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
result = face_mesh.process(frame_rgb)
if not result.multi_face_landmarks:
return "โ ๏ธ Error: Face not detected.
", None
landmarks = result.multi_face_landmarks[
0].landmark # Fixed: Use integer index
features = extract_features(frame_rgb, landmarks)
test_values = {}
r2_scores = {}
for label in models:
if label == "Hemoglobin":
prediction = models[label].predict([features])[0]
test_values[label] = prediction
r2_scores[label] = 0.385
else:
value = models[label].predict(
[[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
test_values[label] = value
r2_scores[label] = 0.0
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
green_std = np.std(frame_rgb[:, :, 1]) / 255
brightness_std = np.std(gray) / 255
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[
100:150, 100:150].size else 0.5
hr_features = [brightness_std, green_std, tone_index]
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
skin_patch = frame_rgb[100:150, 100:150]
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
brightness_variation = np.std(cv2.cvtColor(frame_rgb,
cv2.COLOR_RGB2GRAY)) / 255
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
spo2 = spo2_model.predict([spo2_features])[0]
rr = int(12 + abs(heart_rate % 5 - 2))
test_results = {
"Hematology":
build_table("๐ฉธ Hematology",
[("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
("Platelet Count", test_values["Platelet Count"],
(150, 450))]),
"Iron Panel":
build_table("๐งฌ Iron Panel",
[("Iron", test_values["Iron"], (60, 170)),
("Ferritin", test_values["Ferritin"], (30, 300)),
("TIBC", test_values["TIBC"], (250, 400))]),
"Liver & Kidney":
build_table("๐งฌ Liver & Kidney",
[("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)),
("Creatinine", test_values["Creatinine"], (0.6, 1.2)),
("Urea", test_values["Urea"], (7, 20))]),
"Electrolytes":
build_table("๐งช Electrolytes",
[("Sodium", test_values["Sodium"], (135, 145)),
("Potassium", test_values["Potassium"], (3.5, 5.1))]),
"Vitals":
build_table("โค๏ธ Vitals",
[("SpO2", spo2, (95, 100)),
("Heart Rate", heart_rate, (60, 100)),
("Respiratory Rate", rr, (12, 20)),
("Temperature", test_values["Temperature"], (97, 99)),
("BP Systolic", test_values["BP Systolic"], (90, 120)),
("BP Diastolic", test_values["BP Diastolic"], (60, 80))])
}
summary = "- Your hemoglobin is a bit low โ this could mean mild anemia.
- Low iron storage detected โ consider an iron profile test.
- Elevated bilirubin โ possible jaundice. Recommend LFT.
- High HbA1c โ prediabetes indication. Recommend glucose check.
- Low SpOโ โ suggest retesting with a pulse oximeter.
"
_, buffer = cv2.imencode('.png', frame_rgb)
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
# Use global patient details
global current_patient_details
health_card_html = build_health_card(
profile_image_base64,
test_results,
summary,
current_patient_details['name'],
current_patient_details['age'],
current_patient_details['gender'],
current_patient_details['id']
)
# Generate PDF
pdf_file_path = generate_pdf(health_card_html)
return pdf_file_path
# Modified route_inputs function
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
if mode == "Image" and image is None:
return "โ ๏ธ Error: No image provided.
", None
if mode == "Video" and video is None:
return "โ ๏ธ Error: No video provided.
", None
# Store patient details globally for use in analyze_face
global current_patient_details
current_patient_details = {
'name': patient_name,
'age': patient_age,
'gender': patient_gender,
'id': patient_id
}
pdf_file_path = analyze_face(image if mode == "Image" else video)
return pdf_file_path
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""# ๐ง Face-Based Lab Test AI Report (Video Mode)""")
with gr.Row():
with gr.Column():
gr.Markdown("### Patient Information")
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
patient_age = gr.Number(label="Age", value=25, minimum=1, maximum=120)
patient_gender = gr.Radio(label="Gender", choices=["Male", "Female", "Other"], value="Male")
patient_id = gr.Textbox(label="Patient ID", placeholder="Enter patient ID (optional)")
gr.Markdown("### Image/Video Input")
mode_selector = gr.Radio(label="Choose Input Mode",
choices=["Image", "Video"],
value="Image")
image_input = gr.Image(type="numpy", label="๐ธ Upload Face Image")
video_input = gr.Video(label="Upload Face Video",
sources=["upload", "webcam"])
submit_btn = gr.Button("๐ Analyze")
with gr.Column():
download_btn = gr.Button("Download Report (PDF)")
download_btn.download(pdf_file_path, "health_report.pdf")
submit_btn.click(fn=route_inputs,
inputs=[mode_selector, image_input, video_input, patient_name, patient_age, patient_gender, patient_id],
outputs=[download_btn])
# Launch Gradio for Replit
demo.launch(server_name="0.0.0.0", server_port=7860)