Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ import joblib
|
|
10 |
from datetime import datetime
|
11 |
import shutil
|
12 |
from reportlab.lib.pagesizes import letter
|
13 |
-
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
14 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
15 |
from reportlab.lib import colors
|
16 |
|
@@ -47,6 +47,7 @@ def train_model(output_range):
|
|
47 |
model = LinearRegression().fit(X, y)
|
48 |
return model
|
49 |
|
|
|
50 |
# Load models
|
51 |
try:
|
52 |
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
|
@@ -159,7 +160,7 @@ def save_results_to_pdf(test_results, filename):
|
|
159 |
return f"Error saving PDF: {str(e)}", None
|
160 |
|
161 |
# Build health card layout
|
162 |
-
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""
|
163 |
from datetime import datetime
|
164 |
current_date = datetime.now().strftime("%B %d, %Y")
|
165 |
|
@@ -202,17 +203,18 @@ def build_health_card(profile_image, test_results, summary, patient_name="", pat
|
|
202 |
</div>
|
203 |
|
204 |
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
|
205 |
-
<
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
210 |
</div>
|
211 |
</div>
|
212 |
<style>
|
213 |
@media print {{
|
214 |
/* Hide input sections during print */
|
215 |
-
.
|
216 |
/* Keep only the health card visible */
|
217 |
#health-card {{ display: block; }}
|
218 |
}}
|
@@ -223,7 +225,118 @@ def build_health_card(profile_image, test_results, summary, patient_name="", pat
|
|
223 |
# Initialize global variable for patient details
|
224 |
current_patient_details = {'name': '', 'age': '', 'gender': '', 'id': ''}
|
225 |
|
226 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
|
228 |
if mode == "Image" and image is None:
|
229 |
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
|
@@ -247,7 +360,7 @@ def route_inputs(mode, image, video, patient_name, patient_age, patient_gender,
|
|
247 |
with gr.Blocks() as demo:
|
248 |
gr.Markdown("""# 🧠 Face-Based Lab Test AI Report (Video Mode)""")
|
249 |
with gr.Row():
|
250 |
-
with gr.Column(
|
251 |
gr.Markdown("### Patient Information")
|
252 |
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
|
253 |
patient_age = gr.Number(label="Age", value=25, minimum=1, maximum=120)
|
@@ -262,7 +375,7 @@ with gr.Blocks() as demo:
|
|
262 |
video_input = gr.Video(label="Upload Face Video",
|
263 |
sources=["upload", "webcam"])
|
264 |
submit_btn = gr.Button("🔍 Analyze")
|
265 |
-
with gr.Column(
|
266 |
result_html = gr.HTML(label="🧪 Health Report Table")
|
267 |
result_pdf = gr.File(label="Download Health Report PDF", interactive=False)
|
268 |
|
@@ -271,4 +384,4 @@ with gr.Blocks() as demo:
|
|
271 |
outputs=[result_html, result_pdf])
|
272 |
|
273 |
# Launch Gradio for Replit
|
274 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
10 |
from datetime import datetime
|
11 |
import shutil
|
12 |
from reportlab.lib.pagesizes import letter
|
13 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
|
14 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
15 |
from reportlab.lib import colors
|
16 |
|
|
|
47 |
model = LinearRegression().fit(X, y)
|
48 |
return model
|
49 |
|
50 |
+
|
51 |
# Load models
|
52 |
try:
|
53 |
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
|
|
|
160 |
return f"Error saving PDF: {str(e)}", None
|
161 |
|
162 |
# Build health card layout
|
163 |
+
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
|
164 |
from datetime import datetime
|
165 |
current_date = datetime.now().strftime("%B %d, %Y")
|
166 |
|
|
|
203 |
</div>
|
204 |
|
205 |
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
|
206 |
+
<button onclick="window.print()" style="padding: 12px 24px; background: linear-gradient(135deg, #4caf50, #45a049); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(76, 175, 80, 0.3); transition: all 0.3s;">
|
207 |
+
📥 Download Report
|
208 |
+
</button>
|
209 |
+
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
|
210 |
+
📞 Find Labs Near Me
|
211 |
+
</button>
|
212 |
</div>
|
213 |
</div>
|
214 |
<style>
|
215 |
@media print {{
|
216 |
/* Hide input sections during print */
|
217 |
+
.gradio-container {{ display: block; }}
|
218 |
/* Keep only the health card visible */
|
219 |
#health-card {{ display: block; }}
|
220 |
}}
|
|
|
225 |
# Initialize global variable for patient details
|
226 |
current_patient_details = {'name': '', 'age': '', 'gender': '', 'id': ''}
|
227 |
|
228 |
+
# Modified analyze_face function
|
229 |
+
def analyze_face(input_data):
|
230 |
+
if isinstance(input_data, str): # Video input (file path in Replit)
|
231 |
+
cap = cv2.VideoCapture(input_data)
|
232 |
+
if not cap.isOpened():
|
233 |
+
return "<div style='color:red;'>⚠️ Error: Could not open video.</div>", None
|
234 |
+
ret, frame = cap.read()
|
235 |
+
cap.release()
|
236 |
+
if not ret:
|
237 |
+
return "<div style='color:red;'>⚠️ Error: Could not read video frame.</div>", None
|
238 |
+
else: # Image input
|
239 |
+
frame = input_data
|
240 |
+
if frame is None:
|
241 |
+
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
|
242 |
+
|
243 |
+
# Resize image to reduce processing time
|
244 |
+
frame = cv2.resize(frame, (640, 480)) # Adjust resolution for Replit
|
245 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
246 |
+
result = face_mesh.process(frame_rgb)
|
247 |
+
if not result.multi_face_landmarks:
|
248 |
+
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
249 |
+
landmarks = result.multi_face_landmarks[0].landmark # Fixed: Use integer index
|
250 |
+
features = extract_features(frame_rgb, landmarks)
|
251 |
+
test_values = {}
|
252 |
+
r2_scores = {}
|
253 |
+
|
254 |
+
for label in models:
|
255 |
+
if label == "Hemoglobin":
|
256 |
+
prediction = models[label].predict([features])[0]
|
257 |
+
test_values[label] = prediction
|
258 |
+
r2_scores[label] = 0.385
|
259 |
+
else:
|
260 |
+
value = models[label].predict([[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
|
261 |
+
test_values[label] = value
|
262 |
+
r2_scores[label] = 0.0
|
263 |
+
|
264 |
+
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
|
265 |
+
green_std = np.std(frame_rgb[:, :, 1]) / 255
|
266 |
+
brightness_std = np.std(gray) / 255
|
267 |
+
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[
|
268 |
+
100:150, 100:150].size else 0.5
|
269 |
+
hr_features = [brightness_std, green_std, tone_index]
|
270 |
+
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
|
271 |
+
skin_patch = frame_rgb[100:150, 100:150]
|
272 |
+
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
|
273 |
+
brightness_variation = np.std(cv2.cvtColor(frame_rgb,
|
274 |
+
cv2.COLOR_RGB2GRAY)) / 255
|
275 |
+
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
|
276 |
+
spo2 = spo2_model.predict([spo2_features])[0]
|
277 |
+
rr = int(12 + abs(heart_rate % 5 - 2))
|
278 |
+
|
279 |
+
test_results = {
|
280 |
+
"Hematology":
|
281 |
+
build_table("🩸 Hematology",
|
282 |
+
[("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
|
283 |
+
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
|
284 |
+
("Platelet Count", test_values["Platelet Count"],
|
285 |
+
(150, 450))]),
|
286 |
+
"Iron Panel":
|
287 |
+
build_table("🧬 Iron Panel",
|
288 |
+
[("Iron", test_values["Iron"], (60, 170)),
|
289 |
+
("Ferritin", test_values["Ferritin"], (30, 300)),
|
290 |
+
("TIBC", test_values["TIBC"], (250, 400))]),
|
291 |
+
"Liver & Kidney":
|
292 |
+
build_table("🧬 Liver & Kidney",
|
293 |
+
[("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)),
|
294 |
+
("Creatinine", test_values["Creatinine"], (0.6, 1.2)),
|
295 |
+
("Urea", test_values["Urea"], (7, 20))]),
|
296 |
+
"Electrolytes":
|
297 |
+
build_table("🧪 Electrolytes",
|
298 |
+
[("Sodium", test_values["Sodium"], (135, 145)),
|
299 |
+
("Potassium", test_values["Potassium"], (3.5, 5.1))]),
|
300 |
+
"Vitals":
|
301 |
+
build_table("❤️ Vitals",
|
302 |
+
[("SpO2", spo2, (95, 100)),
|
303 |
+
("Heart Rate", heart_rate, (60, 100)),
|
304 |
+
("Respiratory Rate", rr, (12, 20)),
|
305 |
+
("Temperature", test_values["Temperature"], (97, 99)),
|
306 |
+
("BP Systolic", test_values["BP Systolic"], (90, 120)),
|
307 |
+
("BP Diastolic", test_values["BP Diastolic"], (60, 80))])
|
308 |
+
}
|
309 |
+
|
310 |
+
summary = "<ul><li>Your hemoglobin is a bit low — this could mean mild anemia.</li><li>Low iron storage detected — consider an iron profile test.</li><li>Elevated bilirubin — possible jaundice. Recommend LFT.</li><li>High HbA1c — prediabetes indication. Recommend glucose check.</li><li>Low SpO₂ — suggest retesting with a pulse oximeter.</li></ul>"
|
311 |
+
|
312 |
+
_, buffer = cv2.imencode('.png', frame_rgb)
|
313 |
+
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
|
314 |
+
|
315 |
+
# Use global patient details
|
316 |
+
global current_patient_details
|
317 |
+
health_card_html = build_health_card(
|
318 |
+
profile_image_base64,
|
319 |
+
test_results,
|
320 |
+
summary,
|
321 |
+
current_patient_details['name'],
|
322 |
+
current_patient_details['age'],
|
323 |
+
current_patient_details['gender'],
|
324 |
+
current_patient_details['id']
|
325 |
+
)
|
326 |
+
|
327 |
+
# Generate PDF and return for download
|
328 |
+
pdf_filename = f"Health_Report_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
329 |
+
pdf_result, pdf_filepath = save_results_to_pdf(test_results, pdf_filename)
|
330 |
+
|
331 |
+
if pdf_filepath:
|
332 |
+
# Copy the PDF to a temporary directory for Gradio to serve it
|
333 |
+
temp_pdf_path = "/tmp/" + os.path.basename(pdf_filepath)
|
334 |
+
shutil.copy(pdf_filepath, temp_pdf_path)
|
335 |
+
|
336 |
+
return health_card_html, temp_pdf_path
|
337 |
+
|
338 |
+
|
339 |
+
# Modified route_inputs function
|
340 |
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
|
341 |
if mode == "Image" and image is None:
|
342 |
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
|
|
|
360 |
with gr.Blocks() as demo:
|
361 |
gr.Markdown("""# 🧠 Face-Based Lab Test AI Report (Video Mode)""")
|
362 |
with gr.Row():
|
363 |
+
with gr.Column():
|
364 |
gr.Markdown("### Patient Information")
|
365 |
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
|
366 |
patient_age = gr.Number(label="Age", value=25, minimum=1, maximum=120)
|
|
|
375 |
video_input = gr.Video(label="Upload Face Video",
|
376 |
sources=["upload", "webcam"])
|
377 |
submit_btn = gr.Button("🔍 Analyze")
|
378 |
+
with gr.Column():
|
379 |
result_html = gr.HTML(label="🧪 Health Report Table")
|
380 |
result_pdf = gr.File(label="Download Health Report PDF", interactive=False)
|
381 |
|
|
|
384 |
outputs=[result_html, result_pdf])
|
385 |
|
386 |
# Launch Gradio for Replit
|
387 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|