Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
from sklearn.ensemble import RandomForestRegressor | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import r2_score | |
import joblib | |
# Generate synthetic training data for Hemoglobin model | |
np.random.seed(42) | |
size = 200 | |
data = { | |
"mean_intensity": np.random.uniform(0.2, 0.5, size), | |
"bbox_width": np.random.uniform(0.05, 0.2, size), | |
"bbox_height": np.random.uniform(0.05, 0.2, size), | |
"eye_dist": np.random.uniform(0.2, 0.5, size), | |
"nose_len": np.random.uniform(0.2, 0.5, size), | |
"jaw_width": np.random.uniform(0.2, 0.5, size), | |
"avg_skin_tone": np.random.uniform(0.2, 0.5, size), | |
"hemoglobin": np.random.uniform(10.5, 17.5, size) # realistic Hb range | |
} | |
df = pd.DataFrame(data) | |
# Save dataset | |
df.to_csv("hemoglobin_dataset.csv", index=False) | |
# Train-test split | |
X = df.drop(columns=["hemoglobin"]) | |
y = df["hemoglobin"] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Train model | |
model = RandomForestRegressor(n_estimators=100, random_state=42) | |
model.fit(X_train, y_train) | |
# Evaluate | |
y_pred = model.predict(X_test) | |
print("R2 Score:", r2_score(y_test, y_pred)) | |
# Save model | |
joblib.dump(model, "hemoglobin_model.pkl") | |
print("Model saved as hemoglobin_model.pkl") | |