Spaces:
Sleeping
Sleeping
# Face Detection-Based AI Automation of Lab Tests | |
# UI: Clean table, multilingual summary, PDF-ready | |
import gradio as gr | |
import cv2 | |
import numpy as np | |
import mediapipe as mp | |
from fpdf import FPDF | |
import os | |
mp_face_mesh = mp.solutions.face_mesh | |
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) | |
def estimate_heart_rate(frame, landmarks): | |
h, w, _ = frame.shape | |
forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]] | |
mask = np.zeros((h, w), dtype=np.uint8) | |
pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32) | |
cv2.fillConvexPoly(mask, pts, 255) | |
green_channel = cv2.split(frame)[1] | |
mean_intensity = cv2.mean(green_channel, mask=mask)[0] | |
heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi)) | |
return heart_rate | |
def estimate_spo2_rr(heart_rate): | |
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2))) | |
rr = int(12 + abs(heart_rate % 5 - 2)) | |
return spo2, rr | |
def get_risk_color(value, normal_range): | |
low, high = normal_range | |
if value < low: | |
return ("Low", "๐ป", "#FFCCCC") | |
elif value > high: | |
return ("High", "๐บ", "#FFE680") | |
else: | |
return ("Normal", "โ ", "#CCFFCC") | |
def generate_pdf_report(image, results_dict, summary_text): | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Arial", "B", 16) | |
pdf.cell(0, 10, "SL Diagnostics - Face Scan AI Lab Report", ln=True, align='C') | |
if image is not None: | |
img_path = "patient_face.jpg" | |
cv2.imwrite(img_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) | |
pdf.image(img_path, x=80, y=25, w=50) | |
os.remove(img_path) | |
pdf.ln(60) | |
pdf.set_font("Arial", "B", 12) | |
pdf.cell(0, 10, "Results Summary", ln=True) | |
pdf.set_font("Arial", "", 10) | |
for key, val in results_dict.items(): | |
if isinstance(val, (int, float)): | |
pdf.cell(0, 8, f"{key}: {val}", ln=True) | |
pdf.ln(5) | |
pdf.set_font("Arial", "B", 12) | |
pdf.cell(0, 10, "AI Summary (English)", ln=True) | |
pdf.set_font("Arial", "", 10) | |
for line in summary_text.split("<li>"): | |
if "</li>" in line: | |
clean = line.split("</li>")[0].strip() | |
pdf.multi_cell(0, 8, f"- {clean}") | |
output_path = "/mnt/data/SL_Diagnostics_Face_Scan_Report.pdf" | |
pdf.output(output_path) | |
return output_path | |
def infer_lab_results(image, landmarks): | |
h, w, _ = image.shape | |
forehead = image[int(0.1*h):int(0.25*h), int(0.35*w):int(0.65*w)] | |
mean_intensity = np.mean(cv2.cvtColor(forehead, cv2.COLOR_BGR2GRAY)) | |
skin_redness = np.mean(image[:, :, 2]) - np.mean(image[:, :, 1]) | |
return { | |
'Hemoglobin': round(10 + (mean_intensity / 255.0) * 7, 1), | |
'WBC Count': round(4 + (1 - mean_intensity / 255.0) * 7, 1), | |
'Platelets': int(150 + (mean_intensity / 255.0) * 150), | |
'Iron': round(40 + (skin_redness / 50.0) * 40, 1), | |
'Ferritin': round(25 + (skin_redness / 50.0) * 70, 1), | |
'TIBC': round(250 + ((255 - mean_intensity) / 255.0) * 150, 1), | |
'Bilirubin': round(0.5 + (255 - mean_intensity) / 255.0 * 1.5, 2), | |
'Creatinine': round(0.8 + (skin_redness / 255.0) * 0.6, 2), | |
'TSH': round(1.0 + (skin_redness / 255.0) * 2.0, 2), | |
'Cortisol': round(12 + (skin_redness / 255.0) * 10, 2), | |
'Fasting Blood Sugar': int(80 + (skin_redness / 255.0) * 60), | |
'HbA1c': round(5.0 + (skin_redness / 255.0) * 1.5, 2), | |
'SpO2': round(97 - (255 - mean_intensity) / 255.0 * 5, 1), | |
'Heart Rate': estimate_heart_rate(image, landmarks), | |
'Respiratory Rate': estimate_spo2_rr(estimate_heart_rate(image, landmarks))[1] | |
} | |
# Gradio UI (app launcher) | |
def app(): | |
def process(image): | |
if image is None: | |
return "Please upload a face image.", None, None | |
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
result = face_mesh.process(frame_rgb) | |
if not result.multi_face_landmarks: | |
return "Face not detected.", None, None | |
landmarks = result.multi_face_landmarks[0].landmark | |
heart_rate = estimate_heart_rate(frame_rgb, landmarks) | |
spo2, rr = estimate_spo2_rr(heart_rate) | |
results_dict = infer_lab_results(frame_rgb, landmarks) | |
summary_text = "<li>Your hemoglobin is a bit low...</li><li>Consider iron tests.</li>" # Placeholder | |
pdf_path = generate_pdf_report(image, results_dict, summary_text) | |
return "Preview complete. You can download your report.", frame_rgb, pdf_path | |
with gr.Blocks() as demo: | |
gr.Markdown("""# ๐ง Face-Based Lab Test AI Report""") | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="๐ธ Upload Face", type="numpy") | |
button = gr.Button("๐ Run Analysis") | |
pdf_output = gr.File(label="๐ Download Report") | |
with gr.Column(): | |
note = gr.Textbox(label="Status") | |
preview = gr.Image(label="Scan Preview") | |
button.click(fn=process, inputs=image, outputs=[note, preview, pdf_output]) | |
demo.launch() | |
app() | |