import gradio as gr
import cv2
import numpy as np
import mediapipe as mp
from sklearn.linear_model import LinearRegression
import random
import base64
import joblib
# Initialize the face mesh model
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5)
# Functions for feature extraction
def extract_features(image, landmarks):
red_channel = image[:, :, 2]
green_channel = image[:, :, 1]
blue_channel = image[:, :, 0]
red_percent = 100 * np.mean(red_channel) / 255
green_percent = 100 * np.mean(green_channel) / 255
blue_percent = 100 * np.mean(blue_channel) / 255
return [red_percent, green_percent, blue_percent]
def train_model(output_range):
X = [[random.uniform(0.2, 0.5), random.uniform(0.05, 0.2), random.uniform(0.05, 0.2),
random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5)] for _ in range(100)]
y = [random.uniform(*output_range) for _ in X]
model = LinearRegression().fit(X, y)
return model
# Load models
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
spo2_model = joblib.load("spo2_model_simulated.pkl")
hr_model = joblib.load("heart_rate_model.pkl")
models = {
"Hemoglobin": hemoglobin_model,
"WBC Count": train_model((4.0, 11.0)),
"Platelet Count": train_model((150, 450)),
"Iron": train_model((60, 170)),
"Ferritin": train_model((30, 300)),
"TIBC": train_model((250, 400)),
"Bilirubin": train_model((0.3, 1.2)),
"Creatinine": train_model((0.6, 1.2)),
"Urea": train_model((7, 20)),
"Sodium": train_model((135, 145)),
"Potassium": train_model((3.5, 5.1)),
"TSH": train_model((0.4, 4.0)),
"Cortisol": train_model((5, 25)),
"FBS": train_model((70, 110)),
"HbA1c": train_model((4.0, 5.7)),
"Albumin": train_model((3.5, 5.5)),
"BP Systolic": train_model((90, 120)),
"BP Diastolic": train_model((60, 80)),
"Temperature": train_model((97, 99))
}
# Helper function for risk level color coding
def get_risk_color(value, normal_range):
low, high = normal_range
if value < low:
return ("Low", "๐ป", "#FFCCCC")
elif value > high:
return ("High", "๐บ", "#FFE680")
else:
return ("Normal", "โ
", "#CCFFCC")
# Function to build table for test results
def build_table(title, rows):
html = (
f'
'
f'
{title}
'
f'
'
f'Test | Result | Expected Range | Level |
'
)
for label, value, ref in rows:
level, icon, bg = get_risk_color(value, ref)
html += f'{label} | {value:.2f} | {ref[0]} โ {ref[1]} | {icon} {level} |
'
html += '
'
return html
# Build health card layout
def build_health_card(profile_image, test_results, summary):
html = f"""
Health Card
Lab Test Results
{test_results['Hematology']}
{test_results['Iron Panel']}
{test_results['Liver & Kidney']}
{test_results['Electrolytes']}
{test_results['Vitals']}
๐ Book a Lab Test
Prefer confirmation? Find certified labs near you.
"""
return html
# Analyze face and return results
def analyze_face(image):
if image is None:
return "โ ๏ธ Error: No image provided.
", None
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
result = face_mesh.process(frame_rgb)
if not result.multi_face_landmarks:
return "โ ๏ธ Error: Face not detected.
", None
landmarks = result.multi_face_landmarks[0].landmark
features = extract_features(frame_rgb, landmarks)
test_values = {}
r2_scores = {}
for label in models:
if label == "Hemoglobin":
prediction = models[label].predict([features])[0]
test_values[label] = prediction
r2_scores[label] = 0.385
else:
value = models[label].predict([[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
test_values[label] = value
r2_scores[label] = 0.0 # simulate other 7D inputs
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
green_std = np.std(frame_rgb[:, :, 1]) / 255
brightness_std = np.std(gray) / 255
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[100:150, 100:150].size else 0.5
hr_features = [brightness_std, green_std, tone_index]
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
skin_patch = frame_rgb[100:150, 100:150]
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
brightness_variation = np.std(cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)) / 255
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
spo2 = spo2_model.predict([spo2_features])[0]
rr = int(12 + abs(heart_rate % 5 - 2))
# Prepare the test results
test_results = {
"Hematology": build_table("๐ฉธ Hematology", [("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
("Platelet Count", test_values["Platelet Count"], (150, 450))]),
"Iron Panel": build_table("๐งฌ Iron Panel", [("Iron", test_values["Iron"], (60, 170)),
("Ferritin", test_values["Ferritin"], (30, 300)),
("TIBC", test_values["TIBC"], (250, 400))]),
"Liver & Kidney": build_table("๐งฌ Liver & Kidney", [("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)),
("Creatinine", test_values["Creatinine"], (0.6, 1.2)),
("Urea", test_values["Urea"], (7, 20))]),
"Electrolytes": build_table("๐งช Electrolytes", [("Sodium", test_values["Sodium"], (135, 145)),
("Potassium", test_values["Potassium"], (3.5, 5.1))]),
"Vitals": build_table("โค๏ธ Vitals", [("SpO2", spo2, (95, 100)),
("Heart Rate", heart_rate, (60, 100)),
("Respiratory Rate", rr, (12, 20)),
("Temperature", test_values["Temperature"], (97, 99)),
("BP Systolic", test_values["BP Systolic"], (90, 120)),
("BP Diastolic", test_values["BP Diastolic"], (60, 80))])
}
summary = "- Your hemoglobin is a bit low โ this could mean mild anemia.
- Low iron storage detected โ consider an iron profile test.
- Elevated bilirubin โ possible jaundice. Recommend LFT.
- High HbA1c โ prediabetes indication. Recommend glucose check.
- Low SpOโ โ suggest retesting with a pulse oximeter.
"
# Convert frame_rgb to base64 for profile picture (this is temporary placeholder)
_, buffer = cv2.imencode('.png', frame_rgb)
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
# Generate Health Card HTML
health_card_html = build_health_card(profile_image_base64, test_results, summary)
return health_card_html, frame_rgb
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""# ๐ง Face-Based Lab Test AI Report (Video Mode)""")
with gr.Row():
with gr.Column():
mode_selector = gr.Radio(label="Choose Input Mode", choices=["Image", "Video"], value="Image")
image_input = gr.Image(type="numpy", label="๐ธ Upload Face Image")
video_input = gr.Video(label="๐ฝ Upload Face Video", sources=["upload", "webcam"])
submit_btn = gr.Button("๐ Analyze")
with gr.Column():
result_html = gr.HTML(label="๐งช Health Report Table")
result_image = gr.Image(label="๐ท Key Frame Snapshot")
def route_inputs(mode, image, video):
health_card_html, frame_rgb = analyze_face(image) if mode == "Image" else analyze_face(video)
return health_card_html, frame_rgb
submit_btn.click(fn=route_inputs, inputs=[mode_selector, image_input, video_input], outputs=[result_html, result_image])
demo.launch()