|
|
|
|
|
import sys |
|
from pathlib import Path |
|
|
|
ROOT = Path(__file__).parent.parent.resolve() |
|
sys.path.append(str(ROOT)) |
|
|
|
from typing import get_type_hints |
|
|
|
from lazydocs import MarkdownGenerator |
|
from ctransformers import Config, LLM, AutoModelForCausalLM |
|
from ctransformers.llm import docs as config_docs |
|
|
|
|
|
|
|
docs = """ |
|
|
|
### Config |
|
|
|
| Parameter | Type | Description | Default | |
|
| :-------- | :---- | :---------- | :------ | |
|
""" |
|
for param, description in config_docs.items(): |
|
if param == "stop": |
|
type_ = "List[str]" |
|
else: |
|
type_ = get_type_hints(Config)[param].__name__ |
|
default = getattr(Config, param) |
|
docs += f"| `{param}` | `{type_}` | {description} | `{default}` |\n" |
|
docs += """ |
|
> **Note:** Currently only LLaMA and MPT models support the `context_length` parameter and only LLaMA models support the `gpu_layers` parameter. |
|
""" |
|
|
|
|
|
|
|
generator = MarkdownGenerator() |
|
for class_ in (AutoModelForCausalLM, LLM): |
|
docs += generator.class2md(class_, depth=3) |
|
docs += "---\n" + generator.func2md(LLM.__call__, clsname="LLM", depth=4) |
|
|
|
|
|
|
|
README = ROOT / "README.md" |
|
MARKER = "<!-- API_DOCS -->" |
|
|
|
with open(README) as f: |
|
contents = f.read() |
|
|
|
parts = contents.split(MARKER) |
|
if len(parts) != 3: |
|
raise RuntimeError( |
|
f"README should have exactly 2 '{MARKER}' but has {len(parts) - 1}." |
|
) |
|
parts[1] = docs |
|
contents = MARKER.join(parts) |
|
|
|
with open(README, mode="w") as f: |
|
f.write(contents) |
|
|