|
import argparse |
|
import concurrent.futures |
|
import copy |
|
import enum |
|
import faulthandler |
|
import functools |
|
import io |
|
import itertools |
|
import json |
|
import math |
|
import mmap |
|
import pickle |
|
import re |
|
import signal |
|
import struct |
|
import sys |
|
import zipfile |
|
from abc import ABCMeta, abstractmethod |
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List, |
|
Literal, Optional, Sequence, Tuple, TypeVar, Union) |
|
|
|
import numpy as np |
|
from sentencepiece import SentencePieceProcessor |
|
|
|
if TYPE_CHECKING: |
|
from typing_extensions import TypeAlias |
|
|
|
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): |
|
faulthandler.register(signal.SIGUSR1) |
|
|
|
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' |
|
|
|
|
|
@dataclass(frozen=True) |
|
class UnquantizedDataType: |
|
name: str |
|
|
|
|
|
DT_F16 = UnquantizedDataType('F16') |
|
DT_F32 = UnquantizedDataType('F32') |
|
DT_I32 = UnquantizedDataType('I32') |
|
DT_BF16 = UnquantizedDataType('BF16') |
|
|
|
|
|
@dataclass(frozen=True) |
|
class QuantizedDataType: |
|
groupsize: int |
|
have_addends: bool |
|
have_g_idx: bool |
|
|
|
|
|
DT_Q4_0 = QuantizedDataType(groupsize=32, have_addends=False, have_g_idx=False) |
|
DT_Q4_1 = QuantizedDataType(groupsize=32, have_addends=True, have_g_idx=False) |
|
|
|
DataType = Union[UnquantizedDataType, QuantizedDataType] |
|
|
|
DATA_TYPE_TO_FTYPE: Dict[DataType, int] = { |
|
DT_F32: 0, |
|
DT_F16: 1, |
|
DT_Q4_0: 2, |
|
DT_Q4_1: 3, |
|
} |
|
|
|
FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \ |
|
{ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()} |
|
|
|
DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = { |
|
DT_BF16: np.dtype(np.uint16), |
|
DT_F16: np.dtype(np.float16), |
|
DT_F32: np.dtype(np.float32), |
|
DT_I32: np.dtype(np.int32), |
|
} |
|
|
|
NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = \ |
|
{dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()} |
|
|
|
|
|
class GGMLFileType(enum.Enum): |
|
AllF32 = 0 |
|
MostlyF16 = 1 |
|
MostlyQ4_0 = 2 |
|
MostlyQ4_1 = 3 |
|
PerLayerIsQ4_1 = 4 |
|
|
|
def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType: |
|
if len(tensor.shape) == 1: |
|
|
|
return DT_F32 |
|
elif self == GGMLFileType.AllF32: |
|
return DT_F32 |
|
elif self == GGMLFileType.MostlyF16: |
|
return DT_F16 |
|
elif self == GGMLFileType.MostlyQ4_0: |
|
return DT_Q4_0 |
|
elif self == GGMLFileType.MostlyQ4_1: |
|
return DT_Q4_1 |
|
elif self == GGMLFileType.PerLayerIsQ4_1: |
|
if name in ('output.weight', 'tok_embeddings.weight'): |
|
return DT_F16 |
|
else: |
|
return DT_Q4_1 |
|
else: |
|
raise ValueError(self) |
|
|
|
|
|
def make_tensors_list() -> List[str]: |
|
ret = [ |
|
'tok_embeddings.weight', |
|
'norm.weight', |
|
'output.weight', |
|
] |
|
for i in range(80): |
|
ret += [ |
|
f'layers.{i}.attention.wq.weight', |
|
f'layers.{i}.attention.wk.weight', |
|
f'layers.{i}.attention.wv.weight', |
|
f'layers.{i}.attention.wo.weight', |
|
f'layers.{i}.attention_norm.weight', |
|
f'layers.{i}.feed_forward.w1.weight', |
|
f'layers.{i}.feed_forward.w2.weight', |
|
f'layers.{i}.feed_forward.w3.weight', |
|
f'layers.{i}.ffn_norm.weight', |
|
] |
|
return ret |
|
|
|
|
|
TENSORS_LIST = make_tensors_list() |
|
TENSORS_SET = set(TENSORS_LIST) |
|
|
|
|
|
@dataclass |
|
class Params: |
|
n_vocab: int |
|
n_embd: int |
|
n_mult: int |
|
n_head: int |
|
n_layer: int |
|
file_type: GGMLFileType |
|
|
|
@staticmethod |
|
def guessed(model: 'LazyModel', file_type: GGMLFileType) -> 'Params': |
|
n_vocab, n_embd = model["tok_embeddings.weight"].shape |
|
|
|
return Params( |
|
n_vocab=n_vocab, |
|
n_embd=n_embd, |
|
n_mult=256, |
|
n_head=n_embd // 128, |
|
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model), |
|
file_type=file_type, |
|
) |
|
|
|
|
|
class SentencePieceVocab: |
|
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None: |
|
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) |
|
added_tokens: Dict[str, int] |
|
if fname_added_tokens is not None: |
|
added_tokens = json.load(open(fname_added_tokens)) |
|
else: |
|
added_tokens = {} |
|
vocab_size: int = self.sentencepiece_tokenizer.vocab_size() |
|
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) |
|
actual_ids = sorted(added_tokens.values()) |
|
if expected_ids != actual_ids: |
|
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}") |
|
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) |
|
self.added_tokens_list = [text for (text, idx) in items] |
|
self.vocab_size_base: int = vocab_size |
|
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list) |
|
self.fname_tokenizer = fname_tokenizer |
|
self.fname_added_tokens = fname_added_tokens |
|
|
|
def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]: |
|
tokenizer = self.sentencepiece_tokenizer |
|
for i in range(tokenizer.vocab_size()): |
|
text: bytes |
|
if tokenizer.is_unknown(i): |
|
text = " \u2047 ".encode("utf-8") |
|
elif tokenizer.is_control(i): |
|
text = b"" |
|
elif tokenizer.is_byte(i): |
|
piece = tokenizer.id_to_piece(i) |
|
if len(piece) != 6: |
|
raise Exception(f"Invalid token: {piece}") |
|
byte_value = int(piece[3:-1], 16) |
|
text = struct.pack("B", byte_value) |
|
else: |
|
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8") |
|
score: float = tokenizer.get_score(i) |
|
yield text, score |
|
|
|
def added_tokens(self) -> Iterable[Tuple[bytes, float]]: |
|
for text in self.added_tokens_list: |
|
score = -1000.0 |
|
yield text.encode("utf-8"), score |
|
|
|
def all_tokens(self) -> Iterable[Tuple[bytes, float]]: |
|
yield from self.sentencepiece_tokens() |
|
yield from self.added_tokens() |
|
|
|
def __repr__(self) -> str: |
|
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>" |
|
|
|
|
|
class GGMLVocab: |
|
def __init__(self, tokens: List[Tuple[bytes, float]]): |
|
self.tokens = tokens |
|
self.vocab_size = len(tokens) |
|
|
|
def all_tokens(self) -> Iterable[Tuple[bytes, float]]: |
|
return self.tokens |
|
|
|
def __repr__(self) -> str: |
|
return f"<GGMLVocab with {self.vocab_size} tokens>" |
|
|
|
|
|
Vocab = Union[SentencePieceVocab, GGMLVocab] |
|
|
|
|
|
def permute(weights: NDArray, n_head: int) -> NDArray: |
|
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) |
|
.swapaxes(1, 2) |
|
.reshape(weights.shape)) |
|
|
|
|
|
def dequantize_q4(qvalues_pack32: NDArray, scales: NDArray, addends: Optional[NDArray], g_idx: Optional[NDArray]) -> NDArray: |
|
|
|
|
|
qvalues_pack8 = qvalues_pack32.view(np.uint8) |
|
|
|
|
|
|
|
qvalues = np.zeros([qvalues_pack8.shape[0], qvalues_pack8.shape[1] * 2], dtype=np.uint8) |
|
qvalues[:, 0::2] = qvalues_pack8 & 0xf |
|
qvalues[:, 1::2] = qvalues_pack8 >> 4 |
|
|
|
assert addends is None or addends.shape == scales.shape |
|
assert qvalues.shape[0] == scales.shape[0] |
|
assert qvalues.shape[1] % scales.shape[1] == 0 |
|
if g_idx is None: |
|
repeat_count = qvalues.shape[1] // scales.shape[1] |
|
scales = scales[:, :, np.newaxis] |
|
if addends is not None: |
|
addends = addends[:, :, np.newaxis] |
|
|
|
qvalues.shape = (qvalues.shape[0], scales.shape[1], int(repeat_count)) |
|
else: |
|
|
|
assert addends is not None |
|
scales = scales[:, g_idx] |
|
addends = addends[:, g_idx] |
|
if addends is None: |
|
|
|
qvalues = qvalues.view(np.int8) |
|
qvalues -= 8 |
|
|
|
values = scales * qvalues |
|
if addends is not None: |
|
values += addends |
|
if g_idx is None: |
|
values.shape = (values.shape[0], values.shape[1] * values.shape[2]) |
|
return values |
|
|
|
|
|
class Tensor(metaclass=ABCMeta): |
|
data_type: DataType |
|
|
|
@abstractmethod |
|
def astype(self, data_type: DataType) -> 'Tensor': ... |
|
@abstractmethod |
|
def permute(self, n_head: int) -> 'Tensor': ... |
|
@abstractmethod |
|
def to_ggml(self) -> 'GGMLCompatibleTensor': ... |
|
|
|
|
|
def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray: |
|
assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}" |
|
fp32_arr = bf16_arr.astype(np.uint32) << 16 |
|
return fp32_arr.view(np.float32) |
|
|
|
|
|
class UnquantizedTensor(Tensor): |
|
def __init__(self, ndarray: NDArray) -> None: |
|
assert isinstance(ndarray, np.ndarray) |
|
self.ndarray = ndarray |
|
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype] |
|
|
|
def astype(self, data_type: DataType) -> Tensor: |
|
dtype = DATA_TYPE_TO_NUMPY[data_type] |
|
if self.data_type == DT_BF16: |
|
self.ndarray = bf16_to_fp32(self.ndarray) |
|
return UnquantizedTensor(self.ndarray.astype(dtype)) |
|
|
|
def to_ggml(self) -> 'UnquantizedTensor': |
|
return self |
|
|
|
def permute(self, n_head: int) -> 'UnquantizedTensor': |
|
return UnquantizedTensor(permute(self.ndarray, n_head)) |
|
|
|
|
|
def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray: |
|
tensor = lazy_tensor.load() |
|
assert isinstance(tensor, UnquantizedTensor) |
|
|
|
|
|
actual_shape = list(tensor.ndarray.shape) |
|
assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape) |
|
if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype: |
|
if convert: |
|
tensor.ndarray = tensor.ndarray.astype(expected_dtype) |
|
else: |
|
raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}') |
|
|
|
return tensor.ndarray |
|
|
|
|
|
class GGMLQuantizedTensor(Tensor): |
|
data_type: QuantizedDataType |
|
|
|
def __init__(self, ndarray: NDArray, shape: List[int], data_type: DataType) -> None: |
|
rows, columns = shape |
|
assert data_type in (DT_Q4_1, DT_Q4_0) |
|
assert isinstance(data_type, QuantizedDataType) |
|
assert columns % data_type.groupsize == 0 |
|
words_in_block = 6 if data_type == DT_Q4_1 else 5 |
|
self.ndarray = ndarray.view(dtype=np.uint32).reshape((rows, columns // data_type.groupsize, words_in_block)) |
|
self.shape = shape[:] |
|
self.data_type = data_type |
|
|
|
def astype(self, data_type: DataType) -> Tensor: |
|
if data_type == self.data_type: |
|
return self |
|
scales = self.ndarray[:, :, 0].view(np.float32) |
|
if self.data_type.have_addends: |
|
addends = self.ndarray[:, :, 1].view(np.float32) |
|
else: |
|
addends = None |
|
qweights = self.ndarray[:, :, -4:].reshape([self.shape[0], self.shape[1] // 8]) |
|
|
|
dq = dequantize_q4(qweights, scales, addends, g_idx=None) |
|
return UnquantizedTensor(dq).astype(data_type) |
|
|
|
def to_ggml(self) -> 'GGMLQuantizedTensor': |
|
return self |
|
|
|
def permute(self, n_head: int) -> 'GGMLQuantizedTensor': |
|
return GGMLQuantizedTensor(permute(self.ndarray, n_head), self.shape, self.data_type) |
|
|
|
|
|
GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor] |
|
|
|
|
|
class DeferredPermutedTensor(Tensor): |
|
def __init__(self, base: Tensor, n_head: int) -> None: |
|
self.base = base |
|
self.n_head = n_head |
|
self.data_type = self.base.data_type |
|
|
|
def astype(self, data_type: DataType) -> Tensor: |
|
return self.base.astype(data_type).permute(self.n_head) |
|
|
|
def to_ggml(self) -> GGMLCompatibleTensor: |
|
return self.base.to_ggml().permute(self.n_head) |
|
|
|
def permute(self, n_head: int) -> Tensor: |
|
raise Exception("shouldn't permute twice") |
|
|
|
|
|
class GPTQForLLaMaQuantizedTensor(Tensor): |
|
def __init__(self, model: 'LazyModel', namebase: str) -> None: |
|
qweight = load_unquantized(model[f"{namebase}.qweight"], np.int32) |
|
scales = load_unquantized(model[f"{namebase}.scales"], np.float32, convert=True) |
|
|
|
bias = model.get(f"{namebase}.bias") |
|
if bias is not None: |
|
|
|
assert not np.any(load_unquantized(bias)) |
|
|
|
if f"{namebase}.zeros" in model: |
|
zeros = load_unquantized(model[f"{namebase}.zeros"], np.float32) |
|
else: |
|
qzeros = load_unquantized(model[f"{namebase}.qzeros"], np.int32) |
|
assert qzeros.dtype == np.int32 |
|
zeros = dequantize_q4(qzeros, scales, scales, g_idx=None) |
|
assert zeros.dtype == np.float32 |
|
|
|
assert zeros.shape == scales.shape |
|
|
|
|
|
|
|
|
|
|
|
qweight = qweight.T |
|
if scales.shape[1] != 1: |
|
scales = scales.T |
|
zeros = zeros.T |
|
|
|
|
|
self.qweight = qweight |
|
self.scales = scales |
|
self.addends = -zeros |
|
|
|
self.g_idx: Optional[NDArray] |
|
if f"{namebase}.g_idx" in model: |
|
self.g_idx = load_unquantized(model[f"{namebase}.g_idx"], np.int32) |
|
assert self.g_idx.shape == (qweight.shape[1] * 8,) |
|
else: |
|
self.g_idx = None |
|
|
|
self.shape = [self.qweight.shape[0], self.qweight.shape[1] * 8] |
|
self.data_type = QuantizedDataType(groupsize=self.groupsize(), have_addends=True, |
|
have_g_idx=(self.g_idx is not None)) |
|
|
|
def inspect(self, row: int, col: int) -> None: |
|
'''For debugging.''' |
|
qweight = (self.qweight[row, col // 8] >> (4 * (col & 7))) & 0xf |
|
if self.g_idx is not None: |
|
group = self.g_idx[col] |
|
else: |
|
group = int(col // self.groupsize()) |
|
scale = self.scales[row, group] |
|
addend = self.addends[row, group] |
|
with np.printoptions(precision=None, suppress=True): |
|
print(f'scale:{scale} addend:{addend} qweight:{qweight}') |
|
print('possible values:', np.arange(16) * scale + addend) |
|
print('actual value:', qweight * scale + addend) |
|
|
|
def astype(self, data_type: DataType) -> Tensor: |
|
if isinstance(data_type, QuantizedDataType): |
|
assert self.g_idx is None and data_type.have_addends is True and data_type.have_g_idx is False |
|
return self.regroup(data_type.groupsize) |
|
|
|
dequantized = dequantize_q4(np.ascontiguousarray(self.qweight), self.scales, self.addends, self.g_idx) |
|
return UnquantizedTensor(dequantized).astype(data_type) |
|
|
|
def groupsize(self) -> int: |
|
assert self.addends.shape == self.scales.shape |
|
assert self.shape[1] % self.scales.shape[1] == 0 |
|
return self.shape[1] // self.scales.shape[1] |
|
|
|
def regroup(self, new_groupsize: int = 32) -> 'GPTQForLLaMaQuantizedTensor': |
|
|
|
|
|
|
|
|
|
|
|
|
|
assert self.g_idx is None |
|
old_groupsize = self.groupsize() |
|
assert old_groupsize >= new_groupsize and old_groupsize % new_groupsize == 0, old_groupsize |
|
ret = copy.copy(self) |
|
ret.addends = self.addends.repeat(old_groupsize // new_groupsize, axis=1) |
|
ret.scales = self.scales.repeat(old_groupsize // new_groupsize, axis=1) |
|
ret.data_type = QuantizedDataType(groupsize=new_groupsize, have_addends=True, have_g_idx=False) |
|
return ret |
|
|
|
def permute(self, n_head: int) -> Tensor: |
|
return DeferredPermutedTensor(self, n_head) |
|
|
|
def to_ggml(self) -> GGMLQuantizedTensor: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.groupsize() != 32: |
|
raise Exception("should have been regrouped before converting to ggml") |
|
|
|
|
|
|
|
|
|
addends_view = self.addends.view(dtype=np.int32)[:, :, np.newaxis] |
|
scales_view = self.scales.view(dtype=np.int32)[:, :, np.newaxis] |
|
|
|
|
|
grouped = self.qweight.reshape([self.qweight.shape[0], self.qweight.shape[1] // 4, 4]) |
|
|
|
|
|
grouped = np.concatenate([scales_view, addends_view, grouped], axis=2, casting='no') |
|
|
|
return GGMLQuantizedTensor(grouped, self.shape, DT_Q4_1) |
|
|
|
|
|
@dataclass |
|
class LazyTensor: |
|
_load: Callable[[], Tensor] |
|
shape: List[int] |
|
data_type: DataType |
|
description: str |
|
|
|
def load(self) -> Tensor: |
|
ret = self._load() |
|
assert ret.data_type == self.data_type, (self.data_type, ret.data_type, self.description) |
|
return ret |
|
|
|
def astype(self, data_type: DataType) -> 'LazyTensor': |
|
self.validate_conversion_to(data_type) |
|
|
|
def load() -> Tensor: |
|
return self.load().astype(data_type) |
|
return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}') |
|
|
|
def validate_conversion_to(self, data_type: DataType) -> None: |
|
if data_type == self.data_type: |
|
return |
|
if isinstance(data_type, QuantizedDataType): |
|
if not isinstance(self.data_type, QuantizedDataType): |
|
raise Exception(f"Can't turn an unquantized tensor into a quantized type ({data_type})") |
|
if self.data_type.have_g_idx: |
|
sys.stderr.write( |
|
"Error: Input uses the newer GPTQ-for-LLaMa format (using g_idx), " |
|
"which is not yet natively supported by GGML. " |
|
"For now you can still convert this model by passing `--outtype f16` to dequantize, " |
|
"but that will result in a much larger output file for no quality benefit.\n") |
|
sys.exit(1) |
|
assert not data_type.have_g_idx and self.data_type.have_addends and data_type.have_addends |
|
|
|
|
|
LazyModel = Dict[str, LazyTensor] |
|
|
|
|
|
@dataclass |
|
class ModelPlus: |
|
model: LazyModel |
|
paths: List[Path] |
|
format: Literal['ggml', 'torch', 'safetensors'] |
|
vocab: Optional[Vocab] |
|
|
|
|
|
def merge_sharded(models: List[LazyModel]) -> LazyModel: |
|
|
|
|
|
names = {name: None for model in models for name in model} |
|
|
|
def convert(name: str) -> LazyTensor: |
|
lazy_tensors: List[LazyTensor] = [model[name] for model in models] |
|
if len(lazy_tensors) == 1: |
|
|
|
|
|
return lazy_tensors[0] |
|
if len(lazy_tensors[0].shape) == 1: |
|
|
|
return lazy_tensors[0] |
|
if name.startswith('tok_embeddings.') or \ |
|
name.endswith('.attention.wo.weight') or \ |
|
name.endswith('.feed_forward.w2.weight'): |
|
|
|
axis = 1 |
|
else: |
|
|
|
axis = 0 |
|
concatenated_shape = list(lazy_tensors[0].shape) |
|
concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors) |
|
|
|
def load() -> UnquantizedTensor: |
|
ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors] |
|
concatenated: NDArray = np.concatenate(ndarrays, axis=axis) |
|
return UnquantizedTensor(concatenated) |
|
description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]' |
|
return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description) |
|
return {name: convert(name) for name in names} |
|
|
|
|
|
def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus: |
|
formats = set(mp.format for mp in models_plus) |
|
assert len(formats) == 1, "different formats?" |
|
format = formats.pop() |
|
paths = [path for mp in models_plus for path in mp.paths] |
|
|
|
try: |
|
vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None) |
|
except StopIteration: |
|
vocab = None |
|
|
|
if any("model.embed_tokens.weight" in mp.model for mp in models_plus): |
|
|
|
|
|
model: LazyModel = {} |
|
for mp in models_plus: |
|
model.update(mp.model) |
|
else: |
|
model = merge_sharded([mp.model for mp in models_plus]) |
|
|
|
return ModelPlus(model, paths, format, vocab) |
|
|
|
|
|
def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor: |
|
def load() -> Tensor: |
|
return lazy_tensor.load().permute(n_head) |
|
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) |
|
|
|
|
|
def convert_transformers_to_orig(model: LazyModel) -> LazyModel: |
|
out: LazyModel = {} |
|
out["tok_embeddings.weight"] = model["model.embed_tokens.weight"] |
|
out["norm.weight"] = model["model.norm.weight"] |
|
out["output.weight"] = model["lm_head.weight"] |
|
|
|
n_head = model["model.layers.0.self_attn.q_proj.weight"].shape[1] // 128 |
|
for i in itertools.count(): |
|
if f"model.layers.{i}.self_attn.q_proj.weight" not in model: |
|
break |
|
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], n_head) |
|
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], n_head) |
|
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] |
|
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"] |
|
|
|
out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"] |
|
out[f"layers.{i}.feed_forward.w2.weight"] = model[f"model.layers.{i}.mlp.down_proj.weight"] |
|
out[f"layers.{i}.feed_forward.w3.weight"] = model[f"model.layers.{i}.mlp.up_proj.weight"] |
|
|
|
out[f"layers.{i}.attention_norm.weight"] = model[f"model.layers.{i}.input_layernorm.weight"] |
|
out[f"layers.{i}.ffn_norm.weight"] = model[f"model.layers.{i}.post_attention_layernorm.weight"] |
|
return out |
|
|
|
|
|
def handle_quantization(model: LazyModel) -> LazyModel: |
|
'''Convert a model with entries for 'foo.qweight', 'foo.scales', etc. |
|
(which resolve to UnquantizedTensors with the raw data) to one with entries |
|
for 'foo.weight' (which resolve to QuantizedTensors). |
|
''' |
|
def convert(name: str) -> Tuple[str, LazyTensor]: |
|
if name.endswith(".qweight"): |
|
namebase = name.rsplit('.', 1)[0] |
|
orig_name = namebase + ".weight" |
|
|
|
lazy_tensor = model[name] |
|
assert len(lazy_tensor.shape) == 2 |
|
real_shape = [lazy_tensor.shape[1], lazy_tensor.shape[0] * 8] |
|
|
|
|
|
|
|
|
|
lazy_scales = model[f"{namebase}.scales"] |
|
scales_width = 1 if lazy_scales.shape[1] == 1 else lazy_scales.shape[0] |
|
assert real_shape[1] % scales_width == 0 |
|
groupsize = real_shape[1] // scales_width |
|
have_g_idx = f"{namebase}.g_idx" in model |
|
data_type = QuantizedDataType(groupsize=groupsize, have_addends=True, have_g_idx=have_g_idx) |
|
|
|
def load() -> Tensor: |
|
return GPTQForLLaMaQuantizedTensor(model, namebase) |
|
|
|
return (orig_name, LazyTensor(load, real_shape, data_type, '[quantized]')) |
|
else: |
|
return (name, model[name]) |
|
return dict(convert(name) for name in model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class LazyStorageKind: |
|
data_type: DataType |
|
|
|
|
|
@dataclass |
|
class LazyStorage: |
|
load: Callable[[int, int], NDArray] |
|
kind: LazyStorageKind |
|
description: str |
|
|
|
|
|
class LazyUnpickler(pickle.Unpickler): |
|
def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile): |
|
super().__init__(fp) |
|
self.data_base_path = data_base_path |
|
self.zip_file = zip_file |
|
|
|
def persistent_load(self, pid: Any) -> Any: |
|
assert pid[0] == 'storage' |
|
assert isinstance(pid[1], LazyStorageKind) |
|
data_type = pid[1].data_type |
|
filename_stem = pid[2] |
|
filename = self.data_base_path + '/' + filename_stem |
|
info = self.zip_file.getinfo(filename) |
|
|
|
def load(offset: int, elm_count: int) -> NDArray: |
|
dtype = DATA_TYPE_TO_NUMPY.get(data_type) |
|
if dtype is None: |
|
raise Exception("tensor stored in unsupported format") |
|
fp = self.zip_file.open(info) |
|
fp.seek(offset * dtype.itemsize) |
|
size = elm_count * dtype.itemsize |
|
data = fp.read(size) |
|
assert len(data) == size |
|
return np.frombuffer(data, dtype) |
|
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' |
|
return LazyStorage(load=load, kind=pid[1], description=description) |
|
|
|
|
|
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, |
|
|
|
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: |
|
assert isinstance(storage, LazyStorage) |
|
|
|
def load() -> UnquantizedTensor: |
|
elm_count = stride[0] * size[0] |
|
return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size)) |
|
description = f'pickled storage_offset={storage_offset} in {storage.description}' |
|
return LazyTensor(load, list(size), storage.kind.data_type, description) |
|
|
|
|
|
def rebuild_from_type_v2(func, new_type, args, state): |
|
return func(*args) |
|
|
|
CLASSES: Dict[Any, Any] = { |
|
('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2, |
|
('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2, |
|
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), |
|
('torch', 'HalfStorage'): LazyStorageKind(DT_F16), |
|
('torch', 'FloatStorage'): LazyStorageKind(DT_F32), |
|
('torch', 'IntStorage'): LazyStorageKind(DT_I32), |
|
('torch', 'Tensor'): LazyTensor, |
|
} |
|
|
|
def find_class(self, module: str, name: str) -> Any: |
|
if not module.startswith('torch'): |
|
return super().find_class(module, name) |
|
return self.CLASSES[(module, name)] |
|
|
|
|
|
def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus: |
|
zf = zipfile.ZipFile(outer_fp) |
|
pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')] |
|
assert len(pickle_paths) == 1, pickle_paths |
|
pickle_fp = zf.open(pickle_paths[0], 'r') |
|
unpickler = LazyUnpickler(pickle_fp, |
|
data_base_path=pickle_paths[0][:-4], |
|
zip_file=zf) |
|
model = unpickler.load() |
|
as_dict = dict(model.items()) |
|
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None) |
|
|
|
|
|
SAFETENSORS_DATA_TYPES: Dict[str, DataType] = { |
|
'F16': DT_F16, |
|
'F32': DT_F32, |
|
'I32': DT_I32, |
|
} |
|
|
|
|
|
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus: |
|
header_size, = struct.unpack('<Q', fp.read(8)) |
|
header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size)) |
|
|
|
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) |
|
byte_buf = mapped[8 + header_size:] |
|
|
|
def convert(info: Dict[str, Any]) -> LazyTensor: |
|
data_type = SAFETENSORS_DATA_TYPES[info['dtype']] |
|
numpy_dtype = DATA_TYPE_TO_NUMPY[data_type] |
|
shape: List[int] = info['shape'] |
|
begin, end = info['data_offsets'] |
|
assert 0 <= begin <= end <= len(byte_buf) |
|
assert end - begin == math.prod(shape) * numpy_dtype.itemsize |
|
buf = byte_buf[begin:end] |
|
|
|
def load() -> UnquantizedTensor: |
|
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) |
|
description = f'safetensors begin={begin} end={end} type={data_type} path={path}' |
|
return LazyTensor(load, shape, data_type, description) |
|
model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'} |
|
return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None) |
|
|
|
|
|
def must_read(fp: IO[bytes], length: int) -> bytes: |
|
ret = fp.read(length) |
|
if len(ret) < length: |
|
raise Exception("unexpectedly reached end of file") |
|
return ret |
|
|
|
|
|
def lazy_load_ggml_file(fp: io.BufferedReader, path: Path) -> ModelPlus: |
|
magic = must_read(fp, 4)[::-1] |
|
if magic in (b'ggmf', b'ggjt'): |
|
version, = struct.unpack("i", must_read(fp, 4)) |
|
assert version == 1 |
|
else: |
|
assert magic == b'ggml' |
|
version = None |
|
n_vocab, n_embd, n_mult, n_head, n_layer, rot, file_type = struct.unpack('<7i', must_read(fp, 28)) |
|
|
|
tokens: List[Tuple[bytes, float]] = [] |
|
for i in range(n_vocab): |
|
if i == 32000: |
|
|
|
|
|
|
|
|
|
|
|
orig_pos = fp.tell() |
|
fp.seek(20, io.SEEK_CUR) |
|
is_gpt4all = fp.read(21) == b'tok_embeddings.weight' |
|
fp.seek(orig_pos) |
|
if is_gpt4all: |
|
break |
|
|
|
length, = struct.unpack("i", must_read(fp, 4)) |
|
text = must_read(fp, length) |
|
if magic != b'ggml': |
|
score, = struct.unpack("f", must_read(fp, 4)) |
|
tokens.append((text, score)) |
|
vocab = GGMLVocab(tokens) if magic != b'ggml' else None |
|
|
|
model: LazyModel = {} |
|
|
|
off = fp.raw.tell() |
|
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) |
|
fp.raw.seek(off) |
|
|
|
def read_tensor() -> None: |
|
shape_len, name_len, ftype = struct.unpack("iii", must_read(fp, 12)) |
|
assert 0 <= shape_len <= 3 |
|
shape: List[int] = list(struct.unpack(f"{shape_len}i", must_read(fp, 4 * shape_len))) |
|
shape = shape[::-1] |
|
name = must_read(fp, name_len).decode('utf-8') |
|
data_type = FTYPE_TO_DATA_TYPE[ftype] |
|
|
|
if magic == b'ggjt': |
|
fp.seek((fp.tell() + 31) & -32) |
|
|
|
if data_type == DT_Q4_1: |
|
|
|
size = 24 * (shape[1] // 32) * shape[0] |
|
elif data_type == DT_Q4_0: |
|
size = 20 * (shape[1] // 32) * shape[0] |
|
else: |
|
numpy_dtype = DATA_TYPE_TO_NUMPY[data_type] |
|
elm_count = math.prod(shape) |
|
size = elm_count * numpy_dtype.itemsize |
|
offset = fp.tell() |
|
buf = mapped[offset:offset+size] |
|
fp.seek(size, io.SEEK_CUR) |
|
|
|
def load() -> Tensor: |
|
if isinstance(data_type, QuantizedDataType): |
|
ndarray = np.frombuffer(buf, dtype=np.uint32) |
|
return GGMLQuantizedTensor(ndarray, shape, data_type) |
|
else: |
|
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) |
|
description = f'ggml offset={offset} type={data_type} path={path}' |
|
model[name] = LazyTensor(load, shape, data_type, description) |
|
|
|
while fp.read(1) != b'': |
|
fp.seek(-1, io.SEEK_CUR) |
|
read_tensor() |
|
|
|
return ModelPlus(model=model, paths=[path], format='ggml', vocab=vocab) |
|
|
|
|
|
@functools.lru_cache(maxsize=None) |
|
def lazy_load_file(path: Path) -> ModelPlus: |
|
fp = open(path, 'rb') |
|
first8 = fp.read(8) |
|
fp.seek(0) |
|
if first8[:2] == b'PK': |
|
|
|
return lazy_load_torch_file(fp, path) |
|
elif first8[2:4] == b'gg': |
|
|
|
return lazy_load_ggml_file(fp, path) |
|
elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024: |
|
|
|
return lazy_load_safetensors_file(fp, path) |
|
else: |
|
raise ValueError(f"unknown format: {path}") |
|
|
|
|
|
In = TypeVar('In') |
|
Out = TypeVar('Out') |
|
|
|
|
|
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int) -> Iterable[Out]: |
|
'''Parallel map, but with backpressure. If the caller doesn't call `next` |
|
fast enough, this will stop calling `func` at some point rather than |
|
letting results pile up in memory. Specifically, there is a max of one |
|
output value buffered per thread.''' |
|
with concurrent.futures.ThreadPoolExecutor() as executor: |
|
futures: List[concurrent.futures.Future[Out]] = [] |
|
items_rev = list(iterable)[::-1] |
|
for i in range(min(concurrency, len(items_rev))): |
|
futures.append(executor.submit(func, items_rev.pop())) |
|
while futures: |
|
result = futures.pop(0).result() |
|
if items_rev: |
|
futures.append(executor.submit(func, items_rev.pop())) |
|
yield result |
|
|
|
|
|
def check_vocab_size(params: Params, vocab: Vocab) -> None: |
|
if params.n_vocab != vocab.vocab_size: |
|
|
|
assert isinstance(vocab, SentencePieceVocab) |
|
if params.n_vocab == vocab.vocab_size_base: |
|
print("Ignoring added_tokens.json since model matches vocab size without it.") |
|
vocab.added_tokens_list = [] |
|
vocab.vocab_size = vocab.vocab_size_base |
|
return |
|
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}" |
|
if vocab.fname_added_tokens is not None: |
|
msg += f" combined with {vocab.fname_added_tokens}" |
|
msg += f" has {vocab.vocab_size})." |
|
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None: |
|
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})." |
|
raise Exception(msg) |
|
|
|
|
|
class OutputFile: |
|
def __init__(self, fname_out: Path) -> None: |
|
self.fout = open(fname_out, "wb") |
|
|
|
def write_file_header(self, params: Params) -> None: |
|
self.fout.write(b"ggjt"[::-1]) |
|
values = [ |
|
1, |
|
params.n_vocab, |
|
params.n_embd, |
|
params.n_mult, |
|
params.n_head, |
|
params.n_layer, |
|
params.n_embd // params.n_head, |
|
params.file_type.value, |
|
] |
|
self.fout.write(struct.pack("i" * len(values), *values)) |
|
|
|
def write_tensor_header(self, name: str, shape: Sequence[int], data_type: DataType) -> None: |
|
sname = name.encode('utf-8') |
|
self.fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[data_type])) |
|
self.fout.write(struct.pack("i" * len(shape), *shape[::-1])) |
|
self.fout.write(sname) |
|
self.fout.seek((self.fout.tell() + 31) & -32) |
|
|
|
def write_vocab(self, vocab: Vocab) -> None: |
|
for text, score in vocab.all_tokens(): |
|
self.fout.write(struct.pack("i", len(text))) |
|
self.fout.write(text) |
|
self.fout.write(struct.pack("f", score)) |
|
|
|
@staticmethod |
|
def write_vocab_only(fname_out: Path, vocab: Vocab) -> None: |
|
of = OutputFile(fname_out) |
|
params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, |
|
n_head=1, n_layer=0, file_type=GGMLFileType.AllF32) |
|
of = OutputFile(fname_out) |
|
of.write_file_header(params) |
|
of.write_vocab(vocab) |
|
of.fout.close() |
|
|
|
@staticmethod |
|
def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None: |
|
check_vocab_size(params, vocab) |
|
of = OutputFile(fname_out) |
|
of.write_file_header(params) |
|
print("Writing vocab...") |
|
of.write_vocab(vocab) |
|
|
|
def do_item(item: Tuple[str, LazyTensor]) -> NDArray: |
|
name, lazy_tensor = item |
|
return lazy_tensor.load().to_ggml().ndarray |
|
|
|
ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8) |
|
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): |
|
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) |
|
padi = len(str(len(model))) |
|
print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type}") |
|
of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type) |
|
ndarray.tofile(of.fout) |
|
of.fout.close() |
|
|
|
|
|
def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType: |
|
wq_type = model["layers.0.attention.wq.weight"].data_type |
|
if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)): |
|
return GGMLFileType.AllF32 |
|
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16): |
|
return GGMLFileType.MostlyF16 |
|
if output_type_str == "q4_1" or (output_type_str is None and isinstance(wq_type, QuantizedDataType) and |
|
wq_type.have_addends): |
|
if isinstance(model["output.weight"].data_type, QuantizedDataType): |
|
return GGMLFileType.MostlyQ4_1 |
|
else: |
|
return GGMLFileType.PerLayerIsQ4_1 |
|
if output_type_str == "q4_0" or (output_type_str is None and isinstance(wq_type, QuantizedDataType)): |
|
return GGMLFileType.MostlyQ4_0 |
|
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()} |
|
raise Exception(f"Unexpected combination of types: {name_to_type}") |
|
|
|
|
|
def do_necessary_conversions(model: LazyModel) -> LazyModel: |
|
model = handle_quantization(model) |
|
|
|
if "lm_head.weight" in model: |
|
model = convert_transformers_to_orig(model) |
|
model = filter_and_sort_tensors(model) |
|
|
|
return model |
|
|
|
|
|
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: |
|
return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) |
|
for (name, tensor) in model.items()} |
|
|
|
|
|
def nth_multifile_path(path: Path, n: int) -> Optional[Path]: |
|
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return |
|
the nth path in the model. |
|
''' |
|
|
|
patterns: List[Tuple[str, str]] = [ |
|
|
|
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'), |
|
|
|
(r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'), |
|
|
|
(r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}') |
|
] |
|
for regex, replacement in patterns: |
|
if re.search(regex, path.name): |
|
new_path = path.with_name(re.sub(regex, replacement, path.name)) |
|
if new_path.exists(): |
|
return new_path |
|
return None |
|
|
|
|
|
def find_multifile_paths(path: Path) -> List[Path]: |
|
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return |
|
the whole list of paths in the model. |
|
''' |
|
ret: List[Path] = [] |
|
for i in itertools.count(): |
|
nth_path = nth_multifile_path(path, i) |
|
if nth_path is None: |
|
break |
|
ret.append(nth_path) |
|
if not ret: |
|
|
|
|
|
|
|
return [path] |
|
return ret |
|
|
|
|
|
def load_some_model(path: Path) -> ModelPlus: |
|
'''Load a model of any supported format.''' |
|
|
|
if path.is_dir(): |
|
|
|
files = list(path.glob("model-00001-of-*.safetensors")) |
|
if not files: |
|
|
|
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"] |
|
files = [file for glob in globs for file in path.glob(glob)] |
|
if not files: |
|
|
|
|
|
|
|
files = list(path.glob("ggml-model*.bin*")) |
|
if not files: |
|
raise Exception(f"Can't find model in directory {path}") |
|
if len(files) > 1: |
|
raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}") |
|
path = files[0] |
|
|
|
paths = find_multifile_paths(path) |
|
models_plus: List[ModelPlus] = [] |
|
for path in paths: |
|
print(f"Loading model file {path}") |
|
models_plus.append(lazy_load_file(path)) |
|
|
|
model_plus = merge_multifile_models(models_plus) |
|
return model_plus |
|
|
|
|
|
def filter_and_sort_tensors(model: LazyModel) -> LazyModel: |
|
return {name: model[name] for name in TENSORS_LIST if name in model} |
|
|
|
|
|
def load_vocab(path: Path) -> SentencePieceVocab: |
|
|
|
|
|
|
|
if path.is_dir(): |
|
path2 = path / "tokenizer.model" |
|
|
|
path3 = path.parent / "tokenizer.model" |
|
if path2.exists(): |
|
path = path2 |
|
elif path3.exists(): |
|
path = path3 |
|
else: |
|
raise FileNotFoundError( |
|
f"Could not find tokenizer.model in {path} or its parent; " |
|
"if it's in another directory, pass the directory as --vocab-dir") |
|
added_tokens_path = path.parent / "added_tokens.json" |
|
print(f"Loading vocab file {path}") |
|
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None) |
|
|
|
|
|
def default_outfile(model_paths: List[Path], params: Params) -> Path: |
|
namestr = { |
|
GGMLFileType.AllF32: "f32", |
|
GGMLFileType.MostlyF16: "f16", |
|
GGMLFileType.MostlyQ4_0: "q4_0", |
|
GGMLFileType.MostlyQ4_1: "q4_1", |
|
GGMLFileType.PerLayerIsQ4_1: "q4_1", |
|
}[params.file_type] |
|
ret = model_paths[0].parent / f"ggml-model-{namestr}.bin" |
|
if ret in model_paths: |
|
sys.stderr.write( |
|
f"Error: Default output path ({ret}) would overwrite the input. " |
|
"Please explicitly specify a path using --outfile.\n") |
|
sys.exit(1) |
|
return ret |
|
|
|
|
|
def do_dump_model(model_plus: ModelPlus) -> None: |
|
print(f"model_plus.paths = {model_plus.paths!r}") |
|
print(f"model_plus.format = {model_plus.format!r}") |
|
print(f"model_plus.vocab = {model_plus.vocab!r}") |
|
for name, lazy_tensor in model_plus.model.items(): |
|
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") |
|
|
|
|
|
def main(args_in: Optional[List[str]] = None) -> None: |
|
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file") |
|
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") |
|
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") |
|
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") |
|
parser.add_argument("--outtype", choices=["f32", "f16", "q4_1", "q4_0"], help="output format (default: based on input)") |
|
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") |
|
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") |
|
parser.add_argument("model", type=Path, |
|
help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") |
|
args = parser.parse_args(args_in) |
|
|
|
vocab: Vocab |
|
if args.dump_single: |
|
model_plus = lazy_load_file(args.model) |
|
do_dump_model(model_plus) |
|
elif args.vocab_only: |
|
vocab = load_vocab(args.vocab_dir or args.model) |
|
assert args.outfile, "need --outfile if using --vocab-only" |
|
outfile = args.outfile |
|
OutputFile.write_vocab_only(outfile, vocab) |
|
print(f"Wrote {outfile}") |
|
else: |
|
model_plus = load_some_model(args.model) |
|
if args.dump: |
|
do_dump_model(model_plus) |
|
return |
|
if model_plus.vocab is not None and args.vocab_dir is None: |
|
vocab = model_plus.vocab |
|
else: |
|
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent |
|
vocab = load_vocab(vocab_dir) |
|
model = model_plus.model |
|
model = do_necessary_conversions(model) |
|
output_type = pick_output_type(model, args.outtype) |
|
model = convert_to_output_type(model, output_type) |
|
params = Params.guessed(model, output_type) |
|
outfile = args.outfile or default_outfile(model_plus.paths, params) |
|
OutputFile.write_all(outfile, params, model, vocab) |
|
print(f"Wrote {outfile}") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|