|
#include "common.h" |
|
#include "llama.h" |
|
#include "build-info.h" |
|
|
|
|
|
#define CPPHTTPLIB_THREAD_POOL_COUNT 1 |
|
#ifndef NDEBUG |
|
|
|
#define CPPHTTPLIB_NO_EXCEPTIONS 1 |
|
#endif |
|
|
|
#include "httplib.h" |
|
#include "json.hpp" |
|
|
|
#ifndef SERVER_VERBOSE |
|
#define SERVER_VERBOSE 1 |
|
#endif |
|
|
|
using namespace httplib; |
|
using json = nlohmann::json; |
|
|
|
struct server_params { |
|
std::string hostname = "127.0.0.1"; |
|
int32_t port = 8080; |
|
int32_t read_timeout = 600; |
|
int32_t write_timeout = 600; |
|
}; |
|
|
|
static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) { |
|
size_t i; |
|
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {} |
|
return i; |
|
} |
|
|
|
enum stop_type { |
|
STOP_FULL, |
|
STOP_PARTIAL, |
|
}; |
|
|
|
static bool ends_with(const std::string & str, const std::string & suffix) { |
|
return str.size() >= suffix.size() && |
|
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix); |
|
} |
|
|
|
static size_t find_partial_stop_string(const std::string & stop, |
|
const std::string & text) { |
|
if (!text.empty() && !stop.empty()) { |
|
const char text_last_char = text.back(); |
|
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) { |
|
if (stop[char_index] == text_last_char) { |
|
const std::string current_partial = stop.substr(0, char_index + 1); |
|
if (ends_with(text, current_partial)) { |
|
return text.size() - char_index - 1; |
|
} |
|
} |
|
} |
|
} |
|
return std::string::npos; |
|
} |
|
|
|
template<class Iter> |
|
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { |
|
std::string ret; |
|
for (; begin != end; ++begin) { |
|
ret += llama_token_to_str(ctx, *begin); |
|
} |
|
return ret; |
|
} |
|
|
|
static void server_log(const char * level, const char * function, int line, |
|
const char * message, const nlohmann::ordered_json & extra) { |
|
nlohmann::ordered_json log { |
|
{ "timestamp", time(nullptr) }, |
|
{ "level", level }, |
|
{ "function", function }, |
|
{ "line", line }, |
|
{ "message", message }, |
|
}; |
|
|
|
if (!extra.empty()) { |
|
log.merge_patch(extra); |
|
} |
|
|
|
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace); |
|
fprintf(stdout, "%.*s\n", (int)str.size(), str.data()); |
|
fflush(stdout); |
|
} |
|
|
|
static bool server_verbose = false; |
|
|
|
#if SERVER_VERBOSE != 1 |
|
# define LOG_VERBOSE(MSG, ...) |
|
#else |
|
# define LOG_VERBOSE(MSG, ...) \ |
|
do { \ |
|
if (server_verbose) { \ |
|
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \ |
|
} \ |
|
} while(0) |
|
#endif |
|
|
|
#define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__) |
|
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__) |
|
#define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__) |
|
|
|
struct llama_server_context { |
|
bool stream = false; |
|
bool has_next_token = false; |
|
std::string generated_text; |
|
|
|
size_t num_tokens_predicted = 0; |
|
size_t n_past = 0; |
|
size_t n_remain = 0; |
|
|
|
std::vector<llama_token> embd; |
|
std::vector<llama_token> last_n_tokens; |
|
|
|
llama_context * ctx = nullptr; |
|
gpt_params params; |
|
|
|
bool truncated = false; |
|
bool stopped_eos = false; |
|
bool stopped_word = false; |
|
bool stopped_limit = false; |
|
std::string stopping_word; |
|
int32_t multibyte_pending = 0; |
|
|
|
~llama_server_context() { |
|
if (ctx) { |
|
llama_free(ctx); |
|
ctx = nullptr; |
|
} |
|
} |
|
|
|
void rewind() { |
|
params.antiprompt.clear(); |
|
num_tokens_predicted = 0; |
|
generated_text = ""; |
|
generated_text.reserve(params.n_ctx); |
|
truncated = false; |
|
stopped_eos = false; |
|
stopped_word = false; |
|
stopped_limit = false; |
|
stopping_word = ""; |
|
multibyte_pending = 0; |
|
|
|
n_remain = 0; |
|
n_past = 0; |
|
} |
|
|
|
bool loadModel(const gpt_params & params_) { |
|
params = params_; |
|
ctx = llama_init_from_gpt_params(params); |
|
if (ctx == nullptr) { |
|
LOG_ERROR("unable to load model", { { "model", params_.model } }); |
|
return false; |
|
} |
|
|
|
last_n_tokens.resize(params.n_ctx); |
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); |
|
return true; |
|
} |
|
|
|
void loadPrompt() { |
|
params.prompt.insert(0, 1, ' '); |
|
std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true); |
|
|
|
if (params.n_keep < 0) { |
|
params.n_keep = (int)prompt_tokens.size(); |
|
} |
|
params.n_keep = std::min(params.n_ctx - 4, params.n_keep); |
|
|
|
|
|
if (prompt_tokens.size() >= (size_t)params.n_ctx) { |
|
const int n_left = (params.n_ctx - params.n_keep) / 2; |
|
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep); |
|
const int erased_blocks = (prompt_tokens.size() - params.n_keep - n_left - 1) / n_left; |
|
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end()); |
|
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin()); |
|
|
|
LOG_VERBOSE("input truncated", { |
|
{ "n_ctx", params.n_ctx }, |
|
{ "n_keep", params.n_keep }, |
|
{ "n_left", n_left }, |
|
{ "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) }, |
|
}); |
|
|
|
truncated = true; |
|
prompt_tokens = new_tokens; |
|
} else { |
|
const size_t ps = prompt_tokens.size(); |
|
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0); |
|
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps); |
|
} |
|
|
|
|
|
n_past = common_part(embd, prompt_tokens); |
|
embd = prompt_tokens; |
|
if (n_past == prompt_tokens.size()) { |
|
|
|
n_past--; |
|
} |
|
|
|
LOG_VERBOSE("prompt ingested", { |
|
{ "n_past", n_past }, |
|
{ "cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past) }, |
|
{ "to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) }, |
|
}); |
|
|
|
has_next_token = true; |
|
} |
|
|
|
void beginCompletion() { |
|
|
|
n_remain = params.n_predict; |
|
llama_set_rng_seed(ctx, params.seed); |
|
} |
|
|
|
llama_token nextToken() { |
|
llama_token result = -1; |
|
|
|
if (embd.size() >= (size_t)params.n_ctx) { |
|
|
|
const int n_left = (params.n_ctx - params.n_keep) / 2; |
|
|
|
std::vector<llama_token> new_tokens(embd.begin(), embd.begin() + params.n_keep); |
|
new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end()); |
|
embd = new_tokens; |
|
n_past = params.n_keep; |
|
truncated = true; |
|
LOG_VERBOSE("input truncated", { |
|
{ "n_ctx", params.n_ctx }, |
|
{ "n_keep", params.n_keep }, |
|
{ "n_left", n_left }, |
|
{ "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) }, |
|
}); |
|
} |
|
|
|
while (n_past < embd.size()) { |
|
int n_eval = (int)embd.size() - n_past; |
|
if (n_eval > params.n_batch) { |
|
n_eval = params.n_batch; |
|
} |
|
if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads)) { |
|
LOG_ERROR("failed to eval", { |
|
{ "n_eval", n_eval }, |
|
{ "n_past", n_past }, |
|
{ "n_threads", params.n_threads }, |
|
{ "embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) }, |
|
}); |
|
has_next_token = false; |
|
return result; |
|
} |
|
n_past += n_eval; |
|
} |
|
|
|
|
|
const float temp = params.temp; |
|
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k; |
|
const float top_p = params.top_p; |
|
const float tfs_z = params.tfs_z; |
|
const float typical_p = params.typical_p; |
|
const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n; |
|
const float repeat_penalty = params.repeat_penalty; |
|
const float alpha_presence = params.presence_penalty; |
|
const float alpha_frequency = params.frequency_penalty; |
|
const int mirostat = params.mirostat; |
|
const float mirostat_tau = params.mirostat_tau; |
|
const float mirostat_eta = params.mirostat_eta; |
|
const bool penalize_nl = params.penalize_nl; |
|
llama_token id = 0; |
|
|
|
{ |
|
auto * logits = llama_get_logits(ctx); |
|
auto n_vocab = llama_n_vocab(ctx); |
|
|
|
|
|
for (const auto & it : params.logit_bias) { |
|
logits[it.first] += it.second; |
|
} |
|
|
|
std::vector<llama_token_data> candidates; |
|
candidates.reserve(n_vocab); |
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { |
|
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); |
|
} |
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; |
|
|
|
|
|
float nl_logit = logits[llama_token_nl()]; |
|
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx); |
|
llama_sample_repetition_penalty(ctx, &candidates_p, |
|
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, |
|
last_n_repeat, repeat_penalty); |
|
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p, |
|
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, |
|
last_n_repeat, alpha_frequency, alpha_presence); |
|
if (!penalize_nl) { |
|
logits[llama_token_nl()] = nl_logit; |
|
} |
|
|
|
if (temp <= 0) { |
|
|
|
id = llama_sample_token_greedy(ctx, &candidates_p); |
|
} else { |
|
if (mirostat == 1) { |
|
static float mirostat_mu = 2.0f * mirostat_tau; |
|
const int mirostat_m = 100; |
|
llama_sample_temperature(ctx, &candidates_p, temp); |
|
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); |
|
} else if (mirostat == 2) { |
|
static float mirostat_mu = 2.0f * mirostat_tau; |
|
llama_sample_temperature(ctx, &candidates_p, temp); |
|
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu); |
|
} else { |
|
|
|
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1); |
|
llama_sample_typical(ctx, &candidates_p, typical_p, 1); |
|
llama_sample_top_p(ctx, &candidates_p, top_p, 1); |
|
llama_sample_top_k(ctx, &candidates_p, top_k, 1); |
|
llama_sample_temperature(ctx, &candidates_p, temp); |
|
id = llama_sample_token(ctx, &candidates_p); |
|
} |
|
} |
|
last_n_tokens.erase(last_n_tokens.begin()); |
|
last_n_tokens.push_back(id); |
|
num_tokens_predicted++; |
|
} |
|
|
|
|
|
embd.push_back(id); |
|
result = id; |
|
|
|
--n_remain; |
|
|
|
if (!embd.empty() && embd.back() == llama_token_eos()) { |
|
|
|
has_next_token = false; |
|
stopped_eos = true; |
|
LOG_VERBOSE("eos token found", {}); |
|
return result; |
|
} |
|
|
|
has_next_token = params.n_predict == -1 || n_remain != 0; |
|
return result; |
|
} |
|
|
|
size_t findStoppingStrings(const std::string & text, const size_t last_token_size, |
|
const stop_type type) { |
|
size_t stop_pos = std::string::npos; |
|
for (const std::string & word : params.antiprompt) { |
|
size_t pos; |
|
if (type == STOP_FULL) { |
|
const size_t tmp = word.size() + last_token_size; |
|
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0; |
|
pos = text.find(word, from_pos); |
|
} |
|
else { |
|
pos = find_partial_stop_string(word, text); |
|
} |
|
if (pos != std::string::npos && |
|
(stop_pos == std::string::npos || pos < stop_pos)) { |
|
if (type == STOP_FULL) { |
|
stopping_word = word; |
|
stopped_word = true; |
|
has_next_token = false; |
|
} |
|
stop_pos = pos; |
|
} |
|
} |
|
return stop_pos; |
|
} |
|
|
|
std::string doCompletion() { |
|
const llama_token token = nextToken(); |
|
|
|
const std::string token_text = token == -1 ? "" : llama_token_to_str(ctx, token); |
|
generated_text += token_text; |
|
|
|
if (multibyte_pending > 0) { |
|
multibyte_pending -= token_text.size(); |
|
} else if (token_text.size() == 1) { |
|
const char c = token_text[0]; |
|
|
|
if ((c & 0xE0) == 0xC0) { |
|
multibyte_pending = 1; |
|
|
|
} else if ((c & 0xF0) == 0xE0) { |
|
multibyte_pending = 2; |
|
|
|
} else if ((c & 0xF8) == 0xF0) { |
|
multibyte_pending = 3; |
|
} else { |
|
multibyte_pending = 0; |
|
} |
|
} |
|
|
|
if (multibyte_pending > 0 && !has_next_token) { |
|
has_next_token = true; |
|
n_remain++; |
|
} |
|
|
|
if (!has_next_token && n_remain == 0) { |
|
stopped_limit = true; |
|
} |
|
|
|
LOG_VERBOSE("next token", { |
|
{ "token", token }, |
|
{ "token_text", llama_token_to_str(ctx, token) }, |
|
{ "has_next_token", has_next_token }, |
|
{ "n_remain", n_remain }, |
|
{ "num_tokens_predicted", num_tokens_predicted }, |
|
{ "stopped_eos", stopped_eos }, |
|
{ "stopped_word", stopped_word }, |
|
{ "stopped_limit", stopped_limit }, |
|
{ "stopping_word", stopping_word }, |
|
}); |
|
|
|
return token_text; |
|
} |
|
}; |
|
|
|
static void server_print_usage(const char * argv0, const gpt_params & params, |
|
const server_params & sparams) { |
|
fprintf(stderr, "usage: %s [options]\n", argv0); |
|
fprintf(stderr, "\n"); |
|
fprintf(stderr, "options:\n"); |
|
fprintf(stderr, " -h, --help show this help message and exit\n"); |
|
fprintf(stderr, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled"); |
|
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); |
|
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx); |
|
fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); |
|
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n"); |
|
fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n"); |
|
if (llama_mlock_supported()) { |
|
fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n"); |
|
} |
|
if (llama_mmap_supported()) { |
|
fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n"); |
|
} |
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD |
|
fprintf(stderr, " -ngl N, --n-gpu-layers N\n"); |
|
fprintf(stderr, " number of layers to store in VRAM\n"); |
|
fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n"); |
|
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); |
|
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n"); |
|
fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n"); |
|
fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n"); |
|
#endif |
|
fprintf(stderr, " -m FNAME, --model FNAME\n"); |
|
fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); |
|
fprintf(stderr, " -a ALIAS, --alias ALIAS\n"); |
|
fprintf(stderr, " set an alias for the model, will be added as `model` field in completion response\n"); |
|
fprintf(stderr, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n"); |
|
fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n"); |
|
fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str()); |
|
fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port); |
|
fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout); |
|
fprintf(stderr, "\n"); |
|
} |
|
|
|
static void server_params_parse(int argc, char ** argv, server_params & sparams, |
|
gpt_params & params) { |
|
gpt_params default_params; |
|
server_params default_sparams; |
|
std::string arg; |
|
bool invalid_param = false; |
|
|
|
for (int i = 1; i < argc; i++) { |
|
arg = argv[i]; |
|
if (arg == "--port") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
sparams.port = std::stoi(argv[i]); |
|
} else if (arg == "--host") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
sparams.hostname = argv[i]; |
|
} else if (arg == "--timeout" || arg == "-to") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
sparams.read_timeout = std::stoi(argv[i]); |
|
sparams.write_timeout = std::stoi(argv[i]); |
|
} else if (arg == "-m" || arg == "--model") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.model = argv[i]; |
|
} else if (arg == "-a" || arg == "--alias") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.model_alias = argv[i]; |
|
} else if (arg == "-h" || arg == "--help") { |
|
server_print_usage(argv[0], default_params, default_sparams); |
|
exit(0); |
|
} else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.n_ctx = std::stoi(argv[i]); |
|
} else if (arg == "--memory-f32" || arg == "--memory_f32") { |
|
params.memory_f16 = false; |
|
} else if (arg == "--threads" || arg == "-t") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.n_threads = std::stoi(argv[i]); |
|
} else if (arg == "-b" || arg == "--batch-size") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.n_batch = std::stoi(argv[i]); |
|
params.n_batch = std::min(512, params.n_batch); |
|
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD |
|
params.n_gpu_layers = std::stoi(argv[i]); |
|
#else |
|
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. " |
|
"See main README.md for information on enabling GPU BLAS support", { { "n_gpu_layers", params.n_gpu_layers } }); |
|
#endif |
|
} |
|
else if (arg == "--tensor-split" || arg == "-ts") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
#ifdef GGML_USE_CUBLAS |
|
std::string arg_next = argv[i]; |
|
|
|
|
|
const std::regex regex{ R"([,/]+)" }; |
|
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 }; |
|
std::vector<std::string> split_arg{ it, {} }; |
|
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES); |
|
|
|
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device) { |
|
if (i_device < split_arg.size()) { |
|
params.tensor_split[i_device] = std::stof(split_arg[i_device]); |
|
} |
|
else { |
|
params.tensor_split[i_device] = 0.0f; |
|
} |
|
} |
|
#else |
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.", {}); |
|
#endif |
|
} |
|
else if (arg == "--low-vram" || arg == "-lv") |
|
{ |
|
#ifdef GGML_USE_CUBLAS |
|
params.low_vram = true; |
|
#else |
|
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n"); |
|
#endif |
|
} |
|
else if (arg == "--main-gpu" || arg == "-mg") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
#ifdef GGML_USE_CUBLAS |
|
params.main_gpu = std::stoi(argv[i]); |
|
#else |
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {}); |
|
#endif |
|
} else if (arg == "--lora") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.lora_adapter = argv[i]; |
|
params.use_mmap = false; |
|
} else if (arg == "--lora-base") { |
|
if (++i >= argc) { |
|
invalid_param = true; |
|
break; |
|
} |
|
params.lora_base = argv[i]; |
|
} else if (arg == "-v" || arg == "--verbose") { |
|
#if SERVER_VERBOSE != 1 |
|
LOG_WARNING("server.cpp is not built with verbose logging.", {}); |
|
#else |
|
server_verbose = true; |
|
#endif |
|
} else if (arg == "--mlock") { |
|
params.use_mlock = true; |
|
} else if (arg == "--no-mmap") { |
|
params.use_mmap = false; |
|
} else { |
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); |
|
server_print_usage(argv[0], default_params, default_sparams); |
|
exit(1); |
|
} |
|
} |
|
|
|
if (invalid_param) { |
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); |
|
server_print_usage(argv[0], default_params, default_sparams); |
|
exit(1); |
|
} |
|
} |
|
|
|
static json format_generation_settings(llama_server_context & llama) { |
|
const auto eos_bias = llama.params.logit_bias.find(llama_token_eos()); |
|
const bool ignore_eos = eos_bias != llama.params.logit_bias.end() && |
|
eos_bias->second < 0.0f && std::isinf(eos_bias->second); |
|
|
|
return json { |
|
{ "seed", llama.params.seed }, |
|
{ "temp", llama.params.temp }, |
|
{ "top_k", llama.params.top_k }, |
|
{ "top_p", llama.params.top_p }, |
|
{ "tfs_z", llama.params.tfs_z }, |
|
{ "typical_p", llama.params.typical_p }, |
|
{ "repeat_last_n", llama.params.repeat_last_n }, |
|
{ "repeat_penalty", llama.params.repeat_penalty }, |
|
{ "presence_penalty", llama.params.presence_penalty }, |
|
{ "frequency_penalty", llama.params.frequency_penalty }, |
|
{ "mirostat", llama.params.mirostat }, |
|
{ "mirostat_tau", llama.params.mirostat_tau }, |
|
{ "mirostat_eta", llama.params.mirostat_eta }, |
|
{ "penalize_nl", llama.params.penalize_nl }, |
|
{ "stop", llama.params.antiprompt }, |
|
{ "n_predict", llama.params.n_predict }, |
|
{ "n_keep", llama.params.n_keep }, |
|
{ "ignore_eos", ignore_eos }, |
|
{ "stream", llama.stream }, |
|
{ "logit_bias", llama.params.logit_bias }, |
|
}; |
|
} |
|
|
|
static json format_final_response(llama_server_context & llama, const std::string & content) { |
|
return json { |
|
{ "content", content }, |
|
{ "stop", true }, |
|
{ "model", llama.params.model_alias }, |
|
{ "tokens_predicted", llama.num_tokens_predicted }, |
|
{ "generation_settings", format_generation_settings(llama) }, |
|
{ "prompt", llama.params.prompt }, |
|
{ "truncated", llama.truncated }, |
|
{ "stopped_eos", llama.stopped_eos }, |
|
{ "stopped_word", llama.stopped_word }, |
|
{ "stopped_limit", llama.stopped_limit }, |
|
{ "stopping_word", llama.stopping_word }, |
|
}; |
|
} |
|
|
|
static json format_partial_response(const std::string & content) { |
|
return json { |
|
{ "content", content }, |
|
{ "stop", false }, |
|
}; |
|
} |
|
|
|
static json format_tokenizer_response(const std::vector<llama_token> & tokens) { |
|
return json { |
|
{ "tokens", tokens } |
|
}; |
|
} |
|
|
|
static void parse_options_completion(const json & body, llama_server_context & llama) { |
|
gpt_params default_params; |
|
|
|
llama.stream = body.value("stream", false); |
|
llama.params.n_predict = body.value("n_predict", default_params.n_predict); |
|
llama.params.top_k = body.value("top_k", default_params.top_k); |
|
llama.params.top_p = body.value("top_p", default_params.top_p); |
|
llama.params.tfs_z = body.value("tfs_z", default_params.tfs_z); |
|
llama.params.typical_p = body.value("typical_p", default_params.typical_p); |
|
llama.params.repeat_last_n = body.value("repeat_last_n", default_params.repeat_last_n); |
|
llama.params.temp = body.value("temperature", default_params.temp); |
|
llama.params.repeat_penalty = body.value("repeat_penalty", default_params.repeat_penalty); |
|
llama.params.presence_penalty = body.value("presence_penalty", default_params.presence_penalty); |
|
llama.params.frequency_penalty = body.value("frequency_penalty", default_params.frequency_penalty); |
|
llama.params.mirostat = body.value("mirostat", default_params.mirostat); |
|
llama.params.mirostat_tau = body.value("mirostat_tau", default_params.mirostat_tau); |
|
llama.params.mirostat_eta = body.value("mirostat_eta", default_params.mirostat_eta); |
|
llama.params.penalize_nl = body.value("penalize_nl", default_params.penalize_nl); |
|
llama.params.n_keep = body.value("n_keep", default_params.n_keep); |
|
llama.params.seed = body.value("seed", default_params.seed); |
|
llama.params.prompt = body.value("prompt", default_params.prompt); |
|
|
|
llama.params.logit_bias.clear(); |
|
if (body.value("ignore_eos", false)) { |
|
llama.params.logit_bias[llama_token_eos()] = -INFINITY; |
|
} |
|
|
|
const auto & logit_bias = body.find("logit_bias"); |
|
if (logit_bias != body.end() && logit_bias->is_array()) { |
|
const int n_vocab = llama_n_vocab(llama.ctx); |
|
for (const auto & el : *logit_bias) { |
|
if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) { |
|
llama_token tok = el[0].get<llama_token>(); |
|
if (tok >= 0 && tok < n_vocab) { |
|
if (el[1].is_number()) { |
|
llama.params.logit_bias[tok] = el[1].get<float>(); |
|
} else if (el[1].is_boolean() && !el[1].get<bool>()) { |
|
llama.params.logit_bias[tok] = -INFINITY; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
llama.params.antiprompt.clear(); |
|
const auto & stop = body.find("stop"); |
|
if (stop != body.end() && stop->is_array()) { |
|
for (const auto & word : *stop) { |
|
if (!word.empty()) { |
|
llama.params.antiprompt.push_back(word); |
|
} |
|
} |
|
} |
|
|
|
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama)); |
|
} |
|
|
|
static void log_server_request(const Request & req, const Response & res) { |
|
LOG_INFO("request", { |
|
{ "remote_addr", req.remote_addr }, |
|
{ "remote_port", req.remote_port }, |
|
{ "status", res.status }, |
|
{ "path", req.path }, |
|
{ "request", req.body }, |
|
{ "response", res.body }, |
|
}); |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
|
|
gpt_params params; |
|
server_params sparams; |
|
|
|
|
|
llama_server_context llama; |
|
|
|
server_params_parse(argc, argv, sparams, params); |
|
|
|
if (params.model_alias == "unknown") { |
|
params.model_alias = params.model; |
|
} |
|
|
|
llama_init_backend(); |
|
|
|
LOG_INFO("build info", { |
|
{ "build", BUILD_NUMBER }, |
|
{ "commit", BUILD_COMMIT } |
|
}); |
|
LOG_INFO("system info", { |
|
{ "n_threads", params.n_threads }, |
|
{ "total_threads", std::thread::hardware_concurrency() }, |
|
{ "system_info", llama_print_system_info() }, |
|
}); |
|
|
|
|
|
if (!llama.loadModel(params)) { |
|
return 1; |
|
} |
|
|
|
Server svr; |
|
|
|
svr.set_default_headers({ |
|
{ "Access-Control-Allow-Origin", "*" }, |
|
{ "Access-Control-Allow-Headers", "content-type" } |
|
}); |
|
|
|
svr.Get("/", [](const Request &, Response & res) { |
|
res.set_content("<h1>llama.cpp server works</h1>", "text/html"); |
|
}); |
|
|
|
svr.Post("/completion", [&llama](const Request & req, Response & res) { |
|
llama.rewind(); |
|
llama_reset_timings(llama.ctx); |
|
|
|
parse_options_completion(json::parse(req.body), llama); |
|
|
|
llama.loadPrompt(); |
|
llama.beginCompletion(); |
|
|
|
if (!llama.stream) { |
|
size_t stop_pos = std::string::npos; |
|
|
|
while (llama.has_next_token) { |
|
const std::string token_text = llama.doCompletion(); |
|
|
|
stop_pos = llama.findStoppingStrings(llama.generated_text, |
|
token_text.size(), STOP_FULL); |
|
} |
|
|
|
if (stop_pos == std::string::npos) { |
|
stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL); |
|
} |
|
if (stop_pos != std::string::npos) { |
|
llama.generated_text.erase(llama.generated_text.begin() + stop_pos, |
|
llama.generated_text.end()); |
|
} |
|
|
|
const json data = format_final_response(llama, llama.generated_text); |
|
|
|
llama_print_timings(llama.ctx); |
|
|
|
res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace), |
|
"application/json"); |
|
} else { |
|
const auto chunked_content_provider = [&](size_t, DataSink & sink) { |
|
size_t sent_count = 0; |
|
|
|
while (llama.has_next_token) { |
|
const std::string token_text = llama.doCompletion(); |
|
if (llama.multibyte_pending > 0) { |
|
continue; |
|
} |
|
|
|
size_t pos = std::min(sent_count, llama.generated_text.size()); |
|
|
|
const std::string str_test = llama.generated_text.substr(pos); |
|
size_t stop_pos = |
|
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL); |
|
if (stop_pos != std::string::npos) { |
|
llama.generated_text.erase( |
|
llama.generated_text.begin() + pos + stop_pos, |
|
llama.generated_text.end()); |
|
pos = std::min(sent_count, llama.generated_text.size()); |
|
} else { |
|
stop_pos = llama.findStoppingStrings(str_test, token_text.size(), |
|
STOP_PARTIAL); |
|
} |
|
|
|
const std::string to_send = llama.generated_text.substr(pos, stop_pos); |
|
sent_count += to_send.size(); |
|
|
|
const json data = llama.has_next_token |
|
? format_partial_response(to_send) |
|
|
|
: format_final_response(llama, to_send); |
|
|
|
const std::string str = |
|
"data: " + |
|
data.dump(-1, ' ', false, json::error_handler_t::replace) + |
|
"\n\n"; |
|
|
|
LOG_VERBOSE("data stream", { |
|
{ "to_send", str } |
|
}); |
|
|
|
if (!sink.write(str.data(), str.size())) { |
|
LOG_VERBOSE("stream closed", {}); |
|
llama_print_timings(llama.ctx); |
|
return false; |
|
} |
|
} |
|
|
|
llama_print_timings(llama.ctx); |
|
sink.done(); |
|
return true; |
|
}; |
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider); |
|
} |
|
}); |
|
|
|
svr.Options(R"(/.*)", [](const Request &, Response & res) { |
|
return res.set_content("", "application/json"); |
|
}); |
|
|
|
svr.Post("/tokenize", [&llama](const Request & req, Response & res) { |
|
const json body = json::parse(req.body); |
|
const std::string content = body["content"].get<std::string>(); |
|
const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false); |
|
const json data = format_tokenizer_response(tokens); |
|
return res.set_content(data.dump(), "application/json"); |
|
}); |
|
|
|
svr.set_logger(log_server_request); |
|
|
|
svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) { |
|
const auto * fmt = "500 Internal Server Error\n%s"; |
|
char buf[BUFSIZ]; |
|
try { |
|
std::rethrow_exception(std::move(ep)); |
|
} catch (std::exception & e) { |
|
snprintf(buf, sizeof(buf), fmt, e.what()); |
|
} catch (...) { |
|
snprintf(buf, sizeof(buf), fmt, "Unknown Exception"); |
|
} |
|
res.set_content(buf, "text/plain"); |
|
res.status = 500; |
|
}); |
|
|
|
|
|
svr.set_read_timeout(sparams.read_timeout); |
|
svr.set_write_timeout(sparams.write_timeout); |
|
|
|
if (!svr.bind_to_port(sparams.hostname, sparams.port)) { |
|
LOG_ERROR("couldn't bind to server socket", { |
|
{ "hostname", sparams.hostname }, |
|
{ "port", sparams.port }, |
|
}); |
|
return 1; |
|
} |
|
|
|
LOG_INFO("HTTP server listening", { |
|
{ "hostname", sparams.hostname }, |
|
{ "port", sparams.port }, |
|
}); |
|
|
|
if (!svr.listen_after_bind()) { |
|
return 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|