|
#include "llm.h" |
|
|
|
|
|
|
|
|
|
struct replit_hparams |
|
{ |
|
int32_t d_model = 0; |
|
int32_t max_seq_len = 0; |
|
int32_t n_heads = 0; |
|
int32_t n_layers = 0; |
|
int32_t n_vocab = 0; |
|
int32_t ftype = 0; |
|
int32_t n_ctx = 2048; |
|
}; |
|
|
|
using piece_t = std::pair<std::size_t, float>; |
|
using piece_map_t = std::unordered_map<std::string, piece_t>; |
|
|
|
struct replit_tokenizer |
|
{ |
|
gpt_vocab raw_vocab; |
|
piece_map_t piece_map; |
|
std::vector<std::string> vocab; |
|
}; |
|
|
|
struct replit_layer |
|
{ |
|
|
|
struct ggml_tensor *norm_1_weight; |
|
|
|
|
|
struct ggml_tensor *c_attn_wqkv_weight; |
|
struct ggml_tensor *c_attn_out_proj_weight; |
|
|
|
|
|
struct ggml_tensor *norm_2_weight; |
|
|
|
|
|
struct ggml_tensor *ffn_up_proj; |
|
struct ggml_tensor *ffn_down_proj; |
|
}; |
|
|
|
struct replit_model |
|
{ |
|
replit_hparams hparams; |
|
|
|
struct ggml_tensor *wte_weight; |
|
struct ggml_tensor *norm_f_weight; |
|
|
|
std::vector<replit_layer> layers; |
|
|
|
|
|
struct ggml_tensor *memory_k; |
|
struct ggml_tensor *memory_v; |
|
|
|
struct ggml_context *ctx; |
|
std::map<std::string, struct ggml_tensor *> tensors; |
|
}; |
|
|
|
std::pair<std::vector<gpt_vocab::id>, float> encode_word(const std::string &word, const piece_map_t &model) |
|
{ |
|
std::vector<int> best_segmentations_starts(word.length() + 1, -1); |
|
best_segmentations_starts[0] = 0; |
|
|
|
std::vector<float> best_segmentations_scores(word.length() + 1, -std::numeric_limits<float>::infinity()); |
|
best_segmentations_scores[0] = 1.0; |
|
|
|
for (int start_idx = 0; start_idx < word.length(); ++start_idx) |
|
{ |
|
float best_score_at_start = best_segmentations_scores[start_idx]; |
|
for (int end_idx = start_idx + 1; end_idx <= word.length(); ++end_idx) |
|
{ |
|
std::string token = word.substr(start_idx, end_idx - start_idx); |
|
if (model.count(token) && best_score_at_start != -std::numeric_limits<float>::infinity()) |
|
{ |
|
float token_score = model.at(token).second; |
|
float score = token_score + best_score_at_start; |
|
if (best_segmentations_scores[end_idx] == -std::numeric_limits<float>::infinity() || |
|
best_segmentations_scores[end_idx] > score) |
|
{ |
|
best_segmentations_starts[end_idx] = start_idx; |
|
best_segmentations_scores[end_idx] = score; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (best_segmentations_scores.back() == -std::numeric_limits<float>::infinity()) |
|
{ |
|
return std::make_pair(std::vector<gpt_vocab::id>{0}, 0.0f); |
|
} |
|
|
|
float score = best_segmentations_scores.back(); |
|
int start = best_segmentations_starts.back(); |
|
int end = word.length(); |
|
std::vector<gpt_vocab::id> tokens; |
|
while (start != 0) |
|
{ |
|
const auto token_id = model.at(word.substr(start, end - start)).first; |
|
tokens.insert(tokens.begin(), token_id); |
|
int next_start = best_segmentations_starts[start]; |
|
end = start; |
|
start = next_start; |
|
} |
|
const auto token_id = model.at(word.substr(start, end - start)).first; |
|
tokens.insert(tokens.begin(), token_id); |
|
return std::make_pair(tokens, score); |
|
} |
|
|
|
bool replit_tokenizer_load(replit_tokenizer &tokenizer, std::istream &fin, int max_vocab_size) |
|
{ |
|
std::string word; |
|
std::vector<char> buf(128); |
|
|
|
for (std::size_t i = 0; i < max_vocab_size; i++) |
|
{ |
|
uint32_t len; |
|
fin.read((char *)&len, sizeof(len)); |
|
|
|
buf.resize(len); |
|
fin.read((char *)buf.data(), len); |
|
word.assign(buf.data(), len); |
|
|
|
float score; |
|
fin.read((char *)&score, sizeof(score)); |
|
|
|
tokenizer.piece_map[word] = std::make_pair(i, -score); |
|
tokenizer.raw_vocab.id_to_token[i] = word; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
std::string replace_all(const std::string &str, |
|
const std::string &find, |
|
const std::string &replace |
|
) |
|
{ |
|
using namespace std; |
|
string result; |
|
size_t find_len = find.size(); |
|
size_t pos, from = 0; |
|
while (string::npos != (pos = str.find(find, from))) |
|
{ |
|
result.append(str, from, pos - from); |
|
result.append(replace); |
|
from = pos + find_len; |
|
} |
|
result.append(str, from, string::npos); |
|
return result; |
|
} |
|
|
|
std::string ws_symbol = "\342\226\201"; |
|
std::vector<gpt_vocab::id> replit_tokenizer_tokenize(const replit_tokenizer &tokenizer, const std::string &text) |
|
{ |
|
std::vector<gpt_vocab::id> tokens; |
|
auto normalized_text = replace_all(text, " ", ws_symbol); |
|
auto tokenized = encode_word(normalized_text, tokenizer.piece_map); |
|
|
|
return tokenized.first; |
|
} |
|
|
|
|
|
bool replit_model_load(const std::string &fname, replit_model &model, replit_tokenizer &tokenizer) |
|
{ |
|
auto fin = std::ifstream(fname, std::ios::binary); |
|
if (!fin) |
|
{ |
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); |
|
return false; |
|
} |
|
|
|
|
|
{ |
|
uint32_t magic; |
|
fin.read((char *)&magic, sizeof(magic)); |
|
if (magic != 0x67676d6c) |
|
{ |
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
auto &hparams = model.hparams; |
|
|
|
fin.read((char *)&hparams.d_model, sizeof(hparams.d_model)); |
|
fin.read((char *)&hparams.max_seq_len, sizeof(hparams.max_seq_len)); |
|
fin.read((char *)&hparams.n_heads, sizeof(hparams.n_heads)); |
|
fin.read((char *)&hparams.n_layers, sizeof(hparams.n_layers)); |
|
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab)); |
|
fin.read((char *)&hparams.ftype, sizeof(hparams.ftype)); |
|
|
|
hparams.n_ctx = std::min(hparams.max_seq_len, hparams.n_ctx); |
|
|
|
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; |
|
|
|
hparams.ftype %= GGML_QNT_VERSION_FACTOR; |
|
} |
|
|
|
|
|
replit_tokenizer_load(tokenizer, fin, model.hparams.n_vocab); |
|
|
|
|
|
|
|
|
|
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype)); |
|
if (wtype == GGML_TYPE_COUNT) |
|
{ |
|
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(), |
|
model.hparams.ftype); |
|
return false; |
|
} |
|
|
|
auto &ctx = model.ctx; |
|
|
|
size_t ctx_size = 0; |
|
|
|
{ |
|
const auto &hparams = model.hparams; |
|
|
|
const int n_embd = hparams.d_model; |
|
const int n_layer = hparams.n_layers; |
|
const int n_ctx = hparams.max_seq_len; |
|
const int n_vocab = hparams.n_vocab; |
|
|
|
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); |
|
ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); |
|
|
|
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); |
|
ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); |
|
ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); |
|
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); |
|
ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); |
|
ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); |
|
|
|
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); |
|
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); |
|
|
|
ctx_size += (1 + 6 * n_layer) * 512; |
|
} |
|
|
|
|
|
{ |
|
struct ggml_init_params params = { |
|
ctx_size, |
|
NULL, |
|
false, |
|
}; |
|
|
|
model.ctx = ggml_init(params); |
|
if (!model.ctx) |
|
{ |
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto &hparams = model.hparams; |
|
|
|
const size_t n_embd = hparams.d_model; |
|
const size_t n_layer = hparams.n_layers; |
|
const size_t n_vocab = hparams.n_vocab; |
|
|
|
model.layers.resize(n_layer); |
|
|
|
model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); |
|
model.norm_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
|
|
model.tensors["transformer.wte.weight"] = model.wte_weight; |
|
model.tensors["transformer.norm_f.weight"] = model.norm_f_weight; |
|
|
|
for (int i = 0; i < (int)n_layer; ++i) |
|
{ |
|
auto &layer = model.layers[i]; |
|
|
|
layer.norm_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd); |
|
layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); |
|
layer.norm_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
layer.ffn_up_proj = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd); |
|
layer.ffn_down_proj = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd); |
|
|
|
|
|
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_weight; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = |
|
layer.c_attn_out_proj_weight; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_weight; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj; |
|
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto &hparams = model.hparams; |
|
|
|
const int n_embd = hparams.d_model; |
|
const int n_layer = hparams.n_layers; |
|
const int n_ctx = hparams.max_seq_len; |
|
|
|
const int64_t n_mem = n_layer * n_ctx; |
|
const int64_t n_elements = n_embd * n_mem; |
|
|
|
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); |
|
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); |
|
|
|
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); |
|
} |
|
|
|
|
|
{ |
|
while (true) |
|
{ |
|
int32_t n_dims; |
|
int32_t length; |
|
int32_t ttype; |
|
|
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); |
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length)); |
|
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype)); |
|
|
|
if (fin.eof()) |
|
{ |
|
break; |
|
} |
|
|
|
int32_t nelements = 1; |
|
int32_t ne[2] = {1, 1}; |
|
for (int i = 0; i < n_dims; ++i) |
|
{ |
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); |
|
nelements *= ne[i]; |
|
} |
|
|
|
std::string name(length, 0); |
|
fin.read(&name[0], length); |
|
|
|
if (model.tensors.find(name.data()) == model.tensors.end()) |
|
{ |
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); |
|
return false; |
|
} |
|
|
|
auto tensor = model.tensors[name.data()]; |
|
if (ggml_nelements(tensor) != nelements) |
|
{ |
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); |
|
return false; |
|
} |
|
|
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) |
|
{ |
|
fprintf(stderr, |
|
"%s: tensor '%s' has wrong shape in model file: got [%5d, " |
|
"%5d], expected [%5d, %5d]\n", |
|
__func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]); |
|
return false; |
|
} |
|
|
|
|
|
if (0) |
|
{ |
|
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], |
|
ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor)); |
|
} |
|
|
|
const size_t bpe = ggml_type_size(ggml_type(ttype)); |
|
|
|
if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) |
|
{ |
|
fprintf(stderr, |
|
"%s: tensor '%s' has wrong size in model file: got %zu, " |
|
"expected %zu\n", |
|
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe); |
|
return false; |
|
} |
|
|
|
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor)); |
|
} |
|
} |
|
|
|
fin.close(); |
|
|
|
return true; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool replit_eval(const replit_model &model, const int n_threads, const int n_past, |
|
const std::vector<gpt_vocab::id> &embd_inp, |
|
std::vector<float> &embd_w, size_t &mem_per_token) |
|
{ |
|
const bool logits_all = false; |
|
const int N = embd_inp.size(); |
|
|
|
const auto &hparams = model.hparams; |
|
|
|
const int n_embd = hparams.d_model; |
|
const int n_layer = hparams.n_layers; |
|
const int n_head = hparams.n_heads; |
|
const int n_vocab = hparams.n_vocab; |
|
const int n_ctx = hparams.max_seq_len; |
|
|
|
static size_t buf_size = 256u * 1024 * 1024; |
|
static void *buf = malloc(buf_size); |
|
|
|
if (mem_per_token > 0 && mem_per_token * N > buf_size) |
|
{ |
|
const size_t buf_size_new = 1.1 * (mem_per_token * N); |
|
|
|
|
|
|
|
|
|
buf_size = buf_size_new; |
|
buf = realloc(buf, buf_size); |
|
if (buf == nullptr) |
|
{ |
|
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); |
|
return false; |
|
} |
|
} |
|
|
|
struct ggml_init_params params = { |
|
buf_size, |
|
buf, |
|
false, |
|
}; |
|
|
|
struct ggml_context *ctx0 = ggml_init(params); |
|
struct ggml_cgraph gf = {}; |
|
gf.n_threads = n_threads; |
|
|
|
struct ggml_tensor *embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); |
|
memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd)); |
|
|
|
struct ggml_tensor *inpL = ggml_get_rows(ctx0, model.wte_weight, embd); |
|
|
|
for (int il = 0; il < n_layer; ++il) |
|
{ |
|
|
|
struct ggml_tensor *cur; |
|
|
|
|
|
{ |
|
cur = ggml_norm(ctx0, inpL); |
|
|
|
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_1_weight, cur), cur); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
{ |
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur); |
|
|
|
struct ggml_tensor *Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd); |
|
struct ggml_tensor *Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd); |
|
struct ggml_tensor *Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd); |
|
|
|
|
|
{ |
|
struct ggml_tensor *k = |
|
ggml_view_1d(ctx0, model.memory_k, N * n_embd, |
|
(ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past)); |
|
struct ggml_tensor *v = |
|
ggml_view_1d(ctx0, model.memory_v, N * n_embd, |
|
(ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past)); |
|
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); |
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor *Q = ggml_permute( |
|
ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2, |
|
1, 3); |
|
|
|
|
|
|
|
struct ggml_tensor *K = |
|
ggml_permute(ctx0, |
|
ggml_reshape_3d(ctx0, |
|
ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd, |
|
il * n_ctx * ggml_element_size(model.memory_k) * n_embd), |
|
n_embd / n_head, n_head, n_past + N), |
|
0, 2, 1, 3); |
|
|
|
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q); |
|
|
|
|
|
struct ggml_tensor *KQ_scaled = |
|
ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head))); |
|
|
|
struct ggml_tensor *KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8.0f); |
|
|
|
|
|
struct ggml_tensor *KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past); |
|
|
|
|
|
struct ggml_tensor *KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); |
|
|
|
|
|
|
|
struct ggml_tensor *V_trans = ggml_cpy( |
|
ctx0, |
|
ggml_permute(ctx0, |
|
ggml_reshape_3d(ctx0, |
|
ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd, |
|
il * n_ctx * ggml_element_size(model.memory_v) * n_embd), |
|
n_embd / n_head, n_head, n_past + N), |
|
1, 2, 0, 3), |
|
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head)); |
|
|
|
|
|
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); |
|
|
|
|
|
struct ggml_tensor *KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); |
|
|
|
|
|
cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); |
|
|
|
|
|
{ |
|
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); |
|
} |
|
} |
|
|
|
inpL = ggml_add(ctx0, inpL, cur); |
|
|
|
|
|
{ |
|
cur = ggml_norm(ctx0, inpL); |
|
|
|
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_2_weight, cur), cur); |
|
} |
|
|
|
|
|
{ |
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up_proj, cur); |
|
|
|
|
|
cur = ggml_gelu(ctx0, cur); |
|
|
|
|
|
|
|
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down_proj, cur); |
|
} |
|
|
|
|
|
inpL = ggml_add(ctx0, inpL, cur); |
|
} |
|
|
|
|
|
{ |
|
inpL = ggml_norm(ctx0, inpL); |
|
|
|
inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm_f_weight, inpL), inpL); |
|
} |
|
|
|
|
|
inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL); |
|
|
|
|
|
ggml_build_forward_expand(&gf, inpL); |
|
ggml_graph_compute(ctx0, &gf); |
|
|
|
if (logits_all) |
|
{ |
|
|
|
embd_w.resize(n_vocab * N); |
|
memcpy(embd_w.data(), (float *)ggml_get_data(inpL), sizeof(float) * n_vocab * N); |
|
} |
|
else |
|
{ |
|
|
|
embd_w.resize(n_vocab); |
|
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab); |
|
} |
|
|
|
if (mem_per_token == 0) |
|
{ |
|
mem_per_token = ggml_used_mem(ctx0) / N; |
|
} |
|
|
|
|
|
ggml_free(ctx0); |
|
|
|
return true; |
|
} |
|
|
|
class replit_llm : public LLM |
|
{ |
|
public: |
|
virtual ~replit_llm() |
|
{ |
|
if (model_.ctx != nullptr) |
|
{ |
|
ggml_free(model_.ctx); |
|
} |
|
} |
|
|
|
std::vector<gpt_vocab::id> Tokenize(const std::string &text) const override |
|
{ |
|
|
|
std::vector<gpt_vocab::id> embd_inp = replit_tokenizer_tokenize(replit_tokenizer_, text); |
|
|
|
return embd_inp; |
|
} |
|
|
|
const std::string &Detokenize(const gpt_vocab::id id) const override |
|
{ |
|
|
|
const auto it = replit_tokenizer_.raw_vocab.id_to_token.find(id); |
|
if (it == replit_tokenizer_.raw_vocab.id_to_token.end()) |
|
{ |
|
return kEmptyString; |
|
} |
|
|
|
current_word_ = replace_all(replit_tokenizer_.raw_vocab.id_to_token.at(id), ws_symbol, " "); |
|
|
|
return current_word_; |
|
} |
|
|
|
bool IsEosToken(const gpt_vocab::id token) const override |
|
{ |
|
if (token == EosToken()) |
|
{ |
|
return true; |
|
} |
|
|
|
if (!replit_tokenizer_.raw_vocab.special_tokens.empty()) |
|
{ |
|
const std::string &text = Detokenize(token); |
|
return text == "<|end|>" || text == "### End"; |
|
} |
|
return false; |
|
} |
|
|
|
gpt_vocab::id EosToken() const override |
|
{ |
|
const auto it = replit_tokenizer_.raw_vocab.token_to_id.find("<|endoftext|>"); |
|
if (it != replit_tokenizer_.raw_vocab.token_to_id.end()) |
|
{ |
|
return it->second; |
|
} |
|
return 0; |
|
} |
|
|
|
int VocabSize() const override { return replit_tokenizer_.raw_vocab.id_to_token.size(); } |
|
|
|
gpt_vocab::id Sample(const int top_k, const float top_p, |
|
const float temperature, |
|
const float repetition_penalty, |
|
int last_n_tokens, int seed) const override |
|
{ |
|
if (logits_.empty()) |
|
{ |
|
return EosToken(); |
|
} |
|
if (last_n_tokens < 0) |
|
{ |
|
last_n_tokens = ContextLength(); |
|
} |
|
if (seed < 0) |
|
{ |
|
seed = time(nullptr); |
|
} |
|
std::mt19937 rng(seed); |
|
|
|
std::unordered_set<gpt_vocab::id> recent_tokens; |
|
if (repetition_penalty != 1.0f) |
|
{ |
|
recent_tokens = previous_tokens_.GetRecent(last_n_tokens); |
|
} |
|
|
|
return gpt_sample_top_k_top_p( |
|
replit_tokenizer_.raw_vocab, logits_.data() + (logits_.size() - VocabSize()), top_k, top_p, |
|
temperature, repetition_penalty, recent_tokens, rng); |
|
} |
|
|
|
protected: |
|
replit_tokenizer replit_tokenizer_; |
|
bool Load(const std::string &filename, const int context_length, |
|
const int gpu_layers) override |
|
{ |
|
if (context_length > 0) |
|
{ |
|
model_.hparams.n_ctx = context_length; |
|
} |
|
if (!replit_model_load(filename, model_, replit_tokenizer_)) |
|
{ |
|
return false; |
|
} |
|
n_ctx_ = model_.hparams.n_ctx; |
|
return true; |
|
} |
|
|
|
bool Eval(const std::vector<gpt_vocab::id> &tokens, const int threads, |
|
const int n_past) override |
|
{ |
|
return replit_eval(model_, threads, n_past, tokens, logits_, |
|
mem_per_token_); |
|
} |
|
|
|
private: |
|
replit_model model_; |
|
mutable std::string current_word_; |
|
}; |
|
|