ML610's picture
Upload 515 files
1cf2abd
raw
history blame
22.7 kB
#include "llm.h"
// code modified from https://github.com/ggerganov/ggml/blob/master/examples/replit/main.cpp
// no defaults for now
struct replit_hparams
{
int32_t d_model = 0;
int32_t max_seq_len = 0;
int32_t n_heads = 0;
int32_t n_layers = 0;
int32_t n_vocab = 0;
int32_t ftype = 0;
int32_t n_ctx = 2048;
};
using piece_t = std::pair<std::size_t, float>;
using piece_map_t = std::unordered_map<std::string, piece_t>;
struct replit_tokenizer
{
gpt_vocab raw_vocab;
piece_map_t piece_map;
std::vector<std::string> vocab;
};
struct replit_layer
{
// pre normalization
struct ggml_tensor *norm_1_weight;
// attention
struct ggml_tensor *c_attn_wqkv_weight;
struct ggml_tensor *c_attn_out_proj_weight;
// post normalization
struct ggml_tensor *norm_2_weight;
// ff
struct ggml_tensor *ffn_up_proj;
struct ggml_tensor *ffn_down_proj;
};
struct replit_model
{
replit_hparams hparams;
struct ggml_tensor *wte_weight; // position embedding
struct ggml_tensor *norm_f_weight; // language model head
std::vector<replit_layer> layers;
// key + value memory
struct ggml_tensor *memory_k;
struct ggml_tensor *memory_v;
struct ggml_context *ctx;
std::map<std::string, struct ggml_tensor *> tensors;
};
std::pair<std::vector<gpt_vocab::id>, float> encode_word(const std::string &word, const piece_map_t &model)
{
std::vector<int> best_segmentations_starts(word.length() + 1, -1);
best_segmentations_starts[0] = 0;
std::vector<float> best_segmentations_scores(word.length() + 1, -std::numeric_limits<float>::infinity());
best_segmentations_scores[0] = 1.0;
for (int start_idx = 0; start_idx < word.length(); ++start_idx)
{
float best_score_at_start = best_segmentations_scores[start_idx];
for (int end_idx = start_idx + 1; end_idx <= word.length(); ++end_idx)
{
std::string token = word.substr(start_idx, end_idx - start_idx);
if (model.count(token) && best_score_at_start != -std::numeric_limits<float>::infinity())
{
float token_score = model.at(token).second;
float score = token_score + best_score_at_start;
if (best_segmentations_scores[end_idx] == -std::numeric_limits<float>::infinity() ||
best_segmentations_scores[end_idx] > score)
{
best_segmentations_starts[end_idx] = start_idx;
best_segmentations_scores[end_idx] = score;
}
}
}
}
if (best_segmentations_scores.back() == -std::numeric_limits<float>::infinity())
{
return std::make_pair(std::vector<gpt_vocab::id>{0}, 0.0f);
}
float score = best_segmentations_scores.back();
int start = best_segmentations_starts.back();
int end = word.length();
std::vector<gpt_vocab::id> tokens;
while (start != 0)
{
const auto token_id = model.at(word.substr(start, end - start)).first;
tokens.insert(tokens.begin(), token_id);
int next_start = best_segmentations_starts[start];
end = start;
start = next_start;
}
const auto token_id = model.at(word.substr(start, end - start)).first;
tokens.insert(tokens.begin(), token_id);
return std::make_pair(tokens, score);
}
bool replit_tokenizer_load(replit_tokenizer &tokenizer, std::istream &fin, int max_vocab_size)
{
std::string word;
std::vector<char> buf(128);
for (std::size_t i = 0; i < max_vocab_size; i++)
{
uint32_t len;
fin.read((char *)&len, sizeof(len));
buf.resize(len);
fin.read((char *)buf.data(), len);
word.assign(buf.data(), len);
float score;
fin.read((char *)&score, sizeof(score));
tokenizer.piece_map[word] = std::make_pair(i, -score);
tokenizer.raw_vocab.id_to_token[i] = word;
}
return true;
}
std::string replace_all(const std::string &str, // where to work
const std::string &find, // substitute 'find'
const std::string &replace // by 'replace'
)
{
using namespace std;
string result;
size_t find_len = find.size();
size_t pos, from = 0;
while (string::npos != (pos = str.find(find, from)))
{
result.append(str, from, pos - from);
result.append(replace);
from = pos + find_len;
}
result.append(str, from, string::npos);
return result;
}
std::string ws_symbol = "\342\226\201";
std::vector<gpt_vocab::id> replit_tokenizer_tokenize(const replit_tokenizer &tokenizer, const std::string &text)
{
std::vector<gpt_vocab::id> tokens;
auto normalized_text = replace_all(text, " ", ws_symbol);
auto tokenized = encode_word(normalized_text, tokenizer.piece_map);
return tokenized.first;
}
// load the model's weights from a file
bool replit_model_load(const std::string &fname, replit_model &model, replit_tokenizer &tokenizer)
{
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin)
{
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *)&magic, sizeof(magic));
if (magic != 0x67676d6c)
{
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
// load hparams
{
auto &hparams = model.hparams;
fin.read((char *)&hparams.d_model, sizeof(hparams.d_model));
fin.read((char *)&hparams.max_seq_len, sizeof(hparams.max_seq_len));
fin.read((char *)&hparams.n_heads, sizeof(hparams.n_heads));
fin.read((char *)&hparams.n_layers, sizeof(hparams.n_layers));
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));
fin.read((char *)&hparams.ftype, sizeof(hparams.ftype));
hparams.n_ctx = std::min(hparams.max_seq_len, hparams.n_ctx);
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
}
// load vocab
replit_tokenizer_load(tokenizer, fin, model.hparams.n_vocab);
// for the big tensors, we have the option to store the data in 16-bit
// floats or quantized in order to save memory and also to speed up the
// computation
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT)
{
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(),
model.hparams.ftype);
return false;
}
auto &ctx = model.ctx;
size_t ctx_size = 0;
{
const auto &hparams = model.hparams;
const int n_embd = hparams.d_model;
const int n_layer = hparams.n_layers;
const int n_ctx = hparams.max_seq_len;
const int n_vocab = hparams.n_vocab;
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte_weight
ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // ln_f_weight
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_weight
ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); // attn_Wqkv_weight
ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // attn_out_proj_weight
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_2_weight
ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_up_weight
ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); // mlp_mlp_down_weight
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_k
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_v
ctx_size += (1 + 6 * n_layer) * 512; // object overhead
}
// create the ggml context
{
struct ggml_init_params params = {
/*.mem_size =*/ctx_size,
/*.mem_buffer =*/NULL,
/*.no_alloc =*/false,
};
model.ctx = ggml_init(params);
if (!model.ctx)
{
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights
{
const auto &hparams = model.hparams;
const size_t n_embd = hparams.d_model;
const size_t n_layer = hparams.n_layers;
const size_t n_vocab = hparams.n_vocab;
model.layers.resize(n_layer);
model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.norm_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["transformer.wte.weight"] = model.wte_weight;
model.tensors["transformer.norm_f.weight"] = model.norm_f_weight;
for (int i = 0; i < (int)n_layer; ++i)
{
auto &layer = model.layers[i];
layer.norm_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd);
layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.norm_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ffn_up_proj = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd);
layer.ffn_down_proj = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd);
// map by name
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] =
layer.c_attn_out_proj_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_weight;
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj;
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj;
}
}
// key + value memory
{
const auto &hparams = model.hparams;
const int n_embd = hparams.d_model;
const int n_layer = hparams.n_layers;
const int n_ctx = hparams.max_seq_len;
const int64_t n_mem = n_layer * n_ctx;
const int64_t n_elements = n_embd * n_mem;
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
}
// load weights
{
while (true)
{
int32_t n_dims;
int32_t length;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof())
{
break;
}
int32_t nelements = 1;
int32_t ne[2] = {1, 1};
for (int i = 0; i < n_dims; ++i)
{
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name.data()) == model.tensors.end())
{
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
auto tensor = model.tensors[name.data()];
if (ggml_nelements(tensor) != nelements)
{
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
return false;
}
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1])
{
fprintf(stderr,
"%s: tensor '%s' has wrong shape in model file: got [%5d, "
"%5d], expected [%5d, %5d]\n",
__func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]);
return false;
}
// for debugging
if (0)
{
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1],
ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
}
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor))
{
fprintf(stderr,
"%s: tensor '%s' has wrong size in model file: got %zu, "
"expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe);
return false;
}
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
}
}
fin.close();
return true;
}
// evaluate the transformer
//
// - model: the model
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted logits for the next token
//
bool replit_eval(const replit_model &model, const int n_threads, const int n_past,
const std::vector<gpt_vocab::id> &embd_inp,
std::vector<float> &embd_w, size_t &mem_per_token)
{
const bool logits_all = false;
const int N = embd_inp.size();
const auto &hparams = model.hparams;
const int n_embd = hparams.d_model;
const int n_layer = hparams.n_layers;
const int n_head = hparams.n_heads;
const int n_vocab = hparams.n_vocab;
const int n_ctx = hparams.max_seq_len;
static size_t buf_size = 256u * 1024 * 1024;
static void *buf = malloc(buf_size);
if (mem_per_token > 0 && mem_per_token * N > buf_size)
{
const size_t buf_size_new = 1.1 * (mem_per_token * N); // add 10% to account for ggml object overhead
// printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__,
// buf_size, buf_size_new);
// reallocate
buf_size = buf_size_new;
buf = realloc(buf, buf_size);
if (buf == nullptr)
{
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
return false;
}
}
struct ggml_init_params params = {
/*.mem_size =*/buf_size,
/*.mem_buffer =*/buf,
/*.no_alloc =*/false,
};
struct ggml_context *ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
struct ggml_tensor *embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd));
struct ggml_tensor *inpL = ggml_get_rows(ctx0, model.wte_weight, embd);
for (int il = 0; il < n_layer; ++il)
{
struct ggml_tensor *cur;
// a = self.ln_1(x)
{
cur = ggml_norm(ctx0, inpL);
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_1_weight, cur), cur);
}
// self-attention
// b, _, past_key_value = self.attn(a, past_key_value=past_key_value,
// attn_bias=attn_bias, attention_mask=attention_mask,
// is_causal=is_causal)
{
// compute QKV
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur);
struct ggml_tensor *Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd);
struct ggml_tensor *Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd);
struct ggml_tensor *Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd);
// store key and value to memory
{
struct ggml_tensor *k =
ggml_view_1d(ctx0, model.memory_k, N * n_embd,
(ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past));
struct ggml_tensor *v =
ggml_view_1d(ctx0, model.memory_v, N * n_embd,
(ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0,
// 2, 1, 3) [64, N, 12]
struct ggml_tensor *Q = ggml_permute(
ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2,
1, 3);
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1,
// 3) [64, n_past + N, 12]
struct ggml_tensor *K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd,
il * n_ctx * ggml_element_size(model.memory_k) * n_embd),
n_embd / n_head, n_head, n_past + N),
0, 2, 1, 3);
// K * Q
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor *KQ_scaled =
ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head)));
struct ggml_tensor *KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8.0f);
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor *KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
// KQ = soft_max(KQ_masked)
struct ggml_tensor *KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1,
// 2, 0, 3).contiguous() [n_past + N, 64, 12]
struct ggml_tensor *V_trans = ggml_cpy(
ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd,
il * n_ctx * ggml_element_size(model.memory_v) * n_embd),
n_embd / n_head, n_head, n_past + N),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head));
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor *KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
// projection
{
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur);
}
}
inpL = ggml_add(ctx0, inpL, cur);
// m = self.ln_2(x)
{
cur = ggml_norm(ctx0, inpL);
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_2_weight, cur), cur);
}
// n = self.mlp(m)
{
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up_proj, cur);
// GELU activation
cur = ggml_gelu(ctx0, cur);
// projection
// cur = proj_w*cur + proj_b
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down_proj, cur);
}
// x = x + n
inpL = ggml_add(ctx0, inpL, cur);
}
// norm
{
inpL = ggml_norm(ctx0, inpL);
// inpL = ln_f_g*inpL
inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm_f_weight, inpL), inpL);
}
// output embedding weight tied to input embedding
inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
ggml_graph_compute(ctx0, &gf);
if (logits_all)
{
// return result for all tokens
embd_w.resize(n_vocab * N);
memcpy(embd_w.data(), (float *)ggml_get_data(inpL), sizeof(float) * n_vocab * N);
}
else
{
// return result for just the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab);
}
if (mem_per_token == 0)
{
mem_per_token = ggml_used_mem(ctx0) / N;
}
// printf("used_mem = %zu\n", ggml_used_mem(ctx0));
ggml_free(ctx0);
return true;
}
class replit_llm : public LLM
{
public:
virtual ~replit_llm()
{
if (model_.ctx != nullptr)
{
ggml_free(model_.ctx);
}
}
std::vector<gpt_vocab::id> Tokenize(const std::string &text) const override
{
// tokenize the prompt
std::vector<gpt_vocab::id> embd_inp = replit_tokenizer_tokenize(replit_tokenizer_, text);
return embd_inp;
}
const std::string &Detokenize(const gpt_vocab::id id) const override
{
const auto it = replit_tokenizer_.raw_vocab.id_to_token.find(id);
if (it == replit_tokenizer_.raw_vocab.id_to_token.end())
{
return kEmptyString;
}
current_word_ = replace_all(replit_tokenizer_.raw_vocab.id_to_token.at(id), ws_symbol, " ");
return current_word_;
}
bool IsEosToken(const gpt_vocab::id token) const override
{
if (token == EosToken())
{
return true;
}
// Handle special tokens in StarChat and Dolly V2.
if (!replit_tokenizer_.raw_vocab.special_tokens.empty())
{
const std::string &text = Detokenize(token);
return text == "<|end|>" || text == "### End";
}
return false;
}
gpt_vocab::id EosToken() const override
{
const auto it = replit_tokenizer_.raw_vocab.token_to_id.find("<|endoftext|>");
if (it != replit_tokenizer_.raw_vocab.token_to_id.end())
{
return it->second;
}
return 0;
}
int VocabSize() const override { return replit_tokenizer_.raw_vocab.id_to_token.size(); }
gpt_vocab::id Sample(const int top_k, const float top_p,
const float temperature,
const float repetition_penalty,
int last_n_tokens, int seed) const override
{
if (logits_.empty())
{
return EosToken();
}
if (last_n_tokens < 0)
{
last_n_tokens = ContextLength();
}
if (seed < 0)
{
seed = time(nullptr);
}
std::mt19937 rng(seed);
std::unordered_set<gpt_vocab::id> recent_tokens;
if (repetition_penalty != 1.0f)
{
recent_tokens = previous_tokens_.GetRecent(last_n_tokens);
}
return gpt_sample_top_k_top_p(
replit_tokenizer_.raw_vocab, logits_.data() + (logits_.size() - VocabSize()), top_k, top_p,
temperature, repetition_penalty, recent_tokens, rng);
}
protected:
replit_tokenizer replit_tokenizer_;
bool Load(const std::string &filename, const int context_length,
const int gpu_layers) override
{
if (context_length > 0)
{
model_.hparams.n_ctx = context_length;
}
if (!replit_model_load(filename, model_, replit_tokenizer_))
{
return false;
}
n_ctx_ = model_.hparams.n_ctx;
return true;
}
bool Eval(const std::vector<gpt_vocab::id> &tokens, const int threads,
const int n_past) override
{
return replit_eval(model_, threads, n_past, tokens, logits_,
mem_per_token_);
}
private:
replit_model model_;
mutable std::string current_word_;
};