|
#include "llm.h" |
|
|
|
|
|
|
|
|
|
struct gpt_neox_hparams { |
|
int32_t n_vocab = 50257; |
|
int32_t n_ctx = 4096; |
|
int32_t n_embd = 4096; |
|
int32_t n_head = 32; |
|
int32_t n_layer = 16; |
|
int32_t n_rot = 32; |
|
int32_t par_res = 1; |
|
int32_t ftype = 1; |
|
}; |
|
|
|
struct gpt_neox_layer { |
|
|
|
struct ggml_tensor *ln_1_g; |
|
struct ggml_tensor *ln_1_b; |
|
|
|
|
|
struct ggml_tensor *c_attn_attn_w; |
|
struct ggml_tensor *c_attn_attn_b; |
|
|
|
struct ggml_tensor *c_attn_proj_w; |
|
struct ggml_tensor *c_attn_proj_b; |
|
|
|
|
|
struct ggml_tensor *ln_2_g; |
|
struct ggml_tensor *ln_2_b; |
|
|
|
|
|
struct ggml_tensor *c_mlp_fc_w; |
|
struct ggml_tensor *c_mlp_fc_b; |
|
|
|
struct ggml_tensor *c_mlp_proj_w; |
|
struct ggml_tensor *c_mlp_proj_b; |
|
}; |
|
|
|
struct gpt_neox_model { |
|
gpt_neox_hparams hparams; |
|
|
|
|
|
struct ggml_tensor *ln_f_g; |
|
struct ggml_tensor *ln_f_b; |
|
|
|
struct ggml_tensor *wte; |
|
|
|
struct ggml_tensor *lmh_g; |
|
|
|
|
|
std::vector<gpt_neox_layer> layers; |
|
|
|
|
|
struct ggml_tensor *memory_k; |
|
struct ggml_tensor *memory_v; |
|
|
|
|
|
struct ggml_context *ctx; |
|
std::map<std::string, struct ggml_tensor *> tensors; |
|
}; |
|
|
|
|
|
bool gpt_neox_model_load(const std::string &fname, gpt_neox_model &model, |
|
gpt_vocab &vocab) { |
|
auto fin = std::ifstream(fname, std::ios::binary); |
|
if (!fin) { |
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); |
|
return false; |
|
} |
|
|
|
|
|
{ |
|
uint32_t magic; |
|
fin.read((char *)&magic, sizeof(magic)); |
|
if (magic != 0x67676d6c) { |
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, |
|
fname.c_str()); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
auto &hparams = model.hparams; |
|
|
|
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab)); |
|
fin.read((char *)&hparams.n_ctx, sizeof(hparams.n_ctx)); |
|
fin.read((char *)&hparams.n_embd, sizeof(hparams.n_embd)); |
|
fin.read((char *)&hparams.n_head, sizeof(hparams.n_head)); |
|
fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer)); |
|
fin.read((char *)&hparams.n_rot, sizeof(hparams.n_rot)); |
|
fin.read((char *)&hparams.par_res, sizeof(hparams.par_res)); |
|
fin.read((char *)&hparams.ftype, sizeof(hparams.ftype)); |
|
|
|
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; |
|
|
|
hparams.ftype %= GGML_QNT_VERSION_FACTOR; |
|
} |
|
|
|
|
|
{ |
|
const int32_t n_vocab = model.hparams.n_vocab; |
|
|
|
std::string word; |
|
std::vector<char> buf(128); |
|
|
|
for (int i = 0; i < n_vocab; i++) { |
|
uint32_t len; |
|
fin.read((char *)&len, sizeof(len)); |
|
|
|
buf.resize(len); |
|
fin.read((char *)buf.data(), len); |
|
word.assign(buf.data(), len); |
|
|
|
vocab.token_to_id[word] = i; |
|
vocab.id_to_token[i] = word; |
|
} |
|
} |
|
|
|
|
|
|
|
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype)); |
|
if (wtype == GGML_TYPE_COUNT) { |
|
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", |
|
__func__, fname.c_str(), model.hparams.ftype); |
|
return false; |
|
} |
|
|
|
auto &ctx = model.ctx; |
|
|
|
size_t ctx_size = 0; |
|
|
|
{ |
|
const auto &hparams = model.hparams; |
|
|
|
const size_t n_embd = hparams.n_embd; |
|
const size_t n_layer = hparams.n_layer; |
|
const size_t n_ctx = hparams.n_ctx; |
|
const size_t n_vocab = hparams.n_vocab; |
|
|
|
ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); |
|
ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); |
|
|
|
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); |
|
|
|
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); |
|
|
|
|
|
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); |
|
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); |
|
|
|
ctx_size += n_layer * (3 * n_embd * n_embd * |
|
ggml_type_sizef(wtype)); |
|
ctx_size += n_layer * |
|
(3 * n_embd * ggml_type_sizef(GGML_TYPE_F32)); |
|
|
|
ctx_size += |
|
n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); |
|
ctx_size += n_layer * (n_embd * n_embd * |
|
ggml_type_sizef(GGML_TYPE_F32)); |
|
|
|
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); |
|
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); |
|
|
|
ctx_size += |
|
n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); |
|
ctx_size += |
|
n_layer * (4 * n_embd * ggml_type_sizef(GGML_TYPE_F32)); |
|
|
|
ctx_size += n_layer * |
|
(4 * n_embd * n_embd * ggml_type_sizef(wtype)); |
|
ctx_size += |
|
n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); |
|
|
|
ctx_size += |
|
n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F32); |
|
ctx_size += |
|
n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F32); |
|
|
|
ctx_size += (6 + 16 * n_layer) * 1024; |
|
} |
|
|
|
|
|
{ |
|
struct ggml_init_params params = { |
|
ctx_size, |
|
NULL, |
|
false, |
|
}; |
|
|
|
model.ctx = ggml_init(params); |
|
if (!model.ctx) { |
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__); |
|
return false; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto &hparams = model.hparams; |
|
|
|
const int n_embd = hparams.n_embd; |
|
const int n_layer = hparams.n_layer; |
|
const int n_vocab = hparams.n_vocab; |
|
|
|
model.layers.resize(n_layer); |
|
|
|
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); |
|
|
|
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); |
|
|
|
|
|
|
|
model.tensors["gpt_neox.embed_in.weight"] = model.wte; |
|
|
|
model.tensors["gpt_neox.final_layer_norm.weight"] = model.ln_f_g; |
|
model.tensors["gpt_neox.final_layer_norm.bias"] = model.ln_f_b; |
|
|
|
model.tensors["embed_out.weight"] = model.lmh_g; |
|
|
|
|
|
for (int i = 0; i < n_layer; ++i) { |
|
auto &layer = model.layers[i]; |
|
|
|
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd); |
|
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3 * n_embd); |
|
|
|
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); |
|
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd); |
|
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4 * n_embd); |
|
|
|
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd); |
|
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); |
|
|
|
|
|
model.tensors["gpt_neox.layers." + std::to_string(i) + |
|
".input_layernorm.weight"] = layer.ln_1_g; |
|
model.tensors["gpt_neox.layers." + std::to_string(i) + |
|
".input_layernorm.bias"] = layer.ln_1_b; |
|
|
|
model.tensors["gpt_neox.layers." + std::to_string(i) + |
|
".attention.query_key_value.weight"] = layer.c_attn_attn_w; |
|
model.tensors["gpt_neox.layers." + std::to_string(i) + |
|
".attention.query_key_value.bias"] = layer.c_attn_attn_b; |
|
|
|
model.tensors["gpt_neox.layers." + std::to_string(i) + |
|
".attention.dense.weight"] = layer.c_attn_proj_w; |
|
model.tensors["gpt_neox.layers." + std::to_string(i) + |
|
".attention.dense.bias"] = layer.c_attn_proj_b; |
|
|
|
model.tensors["gpt_neox.layers." + std::to_string(i) + |
|
".post_attention_layernorm.weight"] = layer.ln_2_g; |
|
model.tensors["gpt_neox.layers." + std::to_string(i) + |
|
".post_attention_layernorm.bias"] = layer.ln_2_b; |
|
|
|
model.tensors["gpt_neox.layers." + std::to_string(i) + |
|
".mlp.dense_h_to_4h.weight"] = layer.c_mlp_fc_w; |
|
model.tensors["gpt_neox.layers." + std::to_string(i) + |
|
".mlp.dense_h_to_4h.bias"] = layer.c_mlp_fc_b; |
|
|
|
model.tensors["gpt_neox.layers." + std::to_string(i) + |
|
".mlp.dense_4h_to_h.weight"] = layer.c_mlp_proj_w; |
|
model.tensors["gpt_neox.layers." + std::to_string(i) + |
|
".mlp.dense_4h_to_h.bias"] = layer.c_mlp_proj_b; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const auto &hparams = model.hparams; |
|
|
|
const int n_embd = hparams.n_embd; |
|
const int n_layer = hparams.n_layer; |
|
const int n_ctx = hparams.n_ctx; |
|
|
|
const int64_t n_mem = n_layer * n_ctx; |
|
const int64_t n_elements = n_embd * n_mem; |
|
|
|
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); |
|
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); |
|
|
|
const size_t memory_size = |
|
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); |
|
} |
|
|
|
|
|
{ |
|
int n_tensors = 0; |
|
size_t total_size = 0; |
|
|
|
while (true) { |
|
int32_t n_dims; |
|
int32_t length; |
|
int32_t ttype; |
|
|
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); |
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length)); |
|
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype)); |
|
|
|
if (fin.eof()) { |
|
break; |
|
} |
|
|
|
int32_t nelements = 1; |
|
int32_t ne[2] = {1, 1}; |
|
for (int i = 0; i < n_dims; ++i) { |
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); |
|
nelements *= ne[i]; |
|
} |
|
|
|
std::string name(length, 0); |
|
fin.read(&name[0], length); |
|
|
|
if (model.tensors.find(name.data()) == model.tensors.end()) { |
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, |
|
name.data()); |
|
return false; |
|
} |
|
|
|
auto tensor = model.tensors[name.data()]; |
|
if (ggml_nelements(tensor) != nelements) { |
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", |
|
__func__, name.data()); |
|
return false; |
|
} |
|
|
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { |
|
fprintf(stderr, |
|
"%s: tensor '%s' has wrong shape in model file: got [%5d, " |
|
"%5d], expected [%5d, %5d]\n", |
|
__func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1], |
|
ne[0], ne[1]); |
|
return false; |
|
} |
|
|
|
|
|
if (0) { |
|
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", |
|
name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), |
|
ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor)); |
|
} |
|
|
|
const size_t bpe = ggml_type_size(ggml_type(ttype)); |
|
|
|
if ((nelements * bpe) / ggml_blck_size(tensor->type) != |
|
ggml_nbytes(tensor)) { |
|
fprintf(stderr, |
|
"%s: tensor '%s' has wrong size in model file: got %zu, " |
|
"expected %zu\n", |
|
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe); |
|
return false; |
|
} |
|
|
|
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor)); |
|
|
|
total_size += ggml_nbytes(tensor); |
|
} |
|
} |
|
|
|
fin.close(); |
|
|
|
return true; |
|
} |
|
|
|
|
|
ggml_tensor *gpt_neox_ff(const gpt_neox_layer &layer, ggml_context *ctx0, |
|
ggml_tensor *inp) { |
|
ggml_tensor *cur = ggml_norm(ctx0, inp); |
|
|
|
cur = |
|
ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, layer.ln_2_g, cur), cur), |
|
ggml_repeat(ctx0, layer.ln_2_b, cur)); |
|
|
|
cur = ggml_mul_mat(ctx0, layer.c_mlp_fc_w, cur); |
|
|
|
cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.c_mlp_fc_b, cur), cur); |
|
|
|
|
|
cur = ggml_gelu(ctx0, cur); |
|
|
|
|
|
|
|
cur = ggml_mul_mat(ctx0, layer.c_mlp_proj_w, cur); |
|
|
|
cur = ggml_add(ctx0, ggml_repeat(ctx0, layer.c_mlp_proj_b, cur), cur); |
|
return cur; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool gpt_neox_eval(const gpt_neox_model &model, const int n_threads, |
|
const int n_past, const std::vector<gpt_vocab::id> &embd_inp, |
|
std::vector<float> &embd_w, size_t &mem_per_token) { |
|
const int N = embd_inp.size(); |
|
|
|
const auto &hparams = model.hparams; |
|
|
|
const int n_embd = hparams.n_embd; |
|
const int n_layer = hparams.n_layer; |
|
const int n_ctx = hparams.n_ctx; |
|
const int n_head = hparams.n_head; |
|
const int n_vocab = hparams.n_vocab; |
|
const int n_rot = hparams.n_rot; |
|
|
|
static size_t buf_size = 256u * 1024 * 1024; |
|
static void *buf = malloc(buf_size); |
|
|
|
|
|
|
|
static size_t scr0_size = 256u * 1024 * 1024; |
|
static void *scr0 = malloc(scr0_size); |
|
|
|
static size_t scr1_size = 256u * 1024 * 1024; |
|
static void *scr1 = malloc(scr1_size); |
|
|
|
if (mem_per_token > 0 && mem_per_token * N > buf_size) { |
|
const size_t buf_size_new = |
|
1.1 * |
|
(mem_per_token * N); |
|
|
|
|
|
|
|
|
|
buf_size = buf_size_new; |
|
buf = realloc(buf, buf_size); |
|
if (buf == nullptr) { |
|
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); |
|
return false; |
|
} |
|
} |
|
|
|
struct ggml_init_params params = { |
|
buf_size, |
|
buf, |
|
false, |
|
}; |
|
|
|
struct ggml_context *ctx0 = ggml_init(params); |
|
struct ggml_cgraph gf = {}; |
|
gf.n_threads = n_threads; |
|
|
|
struct ggml_tensor *embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); |
|
memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd)); |
|
|
|
|
|
struct ggml_tensor *inpL = ggml_get_rows(ctx0, model.wte, embd); |
|
|
|
for (int il = 0; il < n_layer; ++il) { |
|
struct ggml_tensor *cur; |
|
|
|
ggml_set_scratch(ctx0, { |
|
0, |
|
scr0_size, |
|
scr0, |
|
}); |
|
|
|
|
|
{ |
|
{ |
|
cur = ggml_norm(ctx0, inpL); |
|
|
|
cur = ggml_add( |
|
ctx0, |
|
ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), |
|
cur), |
|
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); |
|
} |
|
|
|
|
|
{ |
|
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_attn_w, cur); |
|
|
|
cur = ggml_add( |
|
ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur), cur); |
|
} |
|
|
|
struct ggml_tensor *Qcur = |
|
ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd / n_head, n_head, N, |
|
cur->nb[1] / n_head, cur->nb[1], |
|
0 * sizeof(float) * n_embd / n_head)); |
|
struct ggml_tensor *Kcur = |
|
ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd / n_head, n_head, N, |
|
cur->nb[1] / n_head, cur->nb[1], |
|
1 * sizeof(float) * n_embd / n_head)); |
|
struct ggml_tensor *Vcur = |
|
ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd / n_head, n_head, N, |
|
cur->nb[1] / n_head, cur->nb[1], |
|
2 * sizeof(float) * n_embd / n_head)); |
|
|
|
|
|
Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, n_rot, 2); |
|
Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, n_rot, 2); |
|
|
|
|
|
{ |
|
Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd, N)); |
|
|
|
struct ggml_tensor *k = |
|
ggml_view_1d(ctx0, model.memory_k, N * n_embd, |
|
(ggml_element_size(model.memory_k) * n_embd) * |
|
(il * n_ctx + n_past)); |
|
struct ggml_tensor *v = ggml_view_2d( |
|
ctx0, model.memory_v, N, n_embd, |
|
(n_ctx)*ggml_element_size(model.memory_v), |
|
(il * n_ctx) * ggml_element_size(model.memory_v) * n_embd + |
|
n_past * ggml_element_size(model.memory_v)); |
|
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); |
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); |
|
} |
|
|
|
|
|
|
|
struct ggml_tensor *Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); |
|
|
|
|
|
struct ggml_tensor *K = ggml_permute( |
|
ctx0, |
|
ggml_reshape_3d( |
|
ctx0, |
|
ggml_view_1d( |
|
ctx0, model.memory_k, (n_past + N) * n_embd, |
|
il * n_ctx * ggml_element_size(model.memory_k) * n_embd), |
|
n_embd / n_head, n_head, n_past + N), |
|
0, 2, 1, 3); |
|
|
|
|
|
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q); |
|
|
|
|
|
struct ggml_tensor *KQ_scaled = ggml_scale_inplace( |
|
ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head))); |
|
|
|
|
|
struct ggml_tensor *KQ_masked = |
|
ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past); |
|
|
|
|
|
struct ggml_tensor *KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked); |
|
|
|
|
|
|
|
struct ggml_tensor *V = ggml_view_3d( |
|
ctx0, model.memory_v, n_past + N, n_embd / n_head, n_head, |
|
n_ctx * ggml_element_size(model.memory_v), |
|
n_ctx * ggml_element_size(model.memory_v) * n_embd / n_head, |
|
il * n_ctx * ggml_element_size(model.memory_v) * n_embd); |
|
|
|
|
|
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); |
|
|
|
|
|
struct ggml_tensor *KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); |
|
|
|
|
|
cur = ggml_cpy(ctx0, KQV_merged, |
|
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); |
|
|
|
|
|
{ |
|
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_proj_w, cur); |
|
|
|
cur = ggml_add( |
|
ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), cur); |
|
} |
|
} |
|
|
|
ggml_set_scratch(ctx0, { |
|
0, |
|
scr1_size, |
|
scr1, |
|
}); |
|
|
|
if (hparams.par_res == 0) { |
|
struct ggml_tensor *inpFF = ggml_add(ctx0, cur, inpL); |
|
|
|
cur = gpt_neox_ff(model.layers[il], ctx0, inpFF); |
|
|
|
|
|
inpL = ggml_add(ctx0, cur, inpFF); |
|
} else { |
|
struct ggml_tensor *inpFF = cur; |
|
|
|
|
|
|
|
cur = gpt_neox_ff(model.layers[il], ctx0, inpL); |
|
|
|
|
|
cur = ggml_add(ctx0, cur, inpFF); |
|
|
|
|
|
inpL = ggml_add(ctx0, cur, inpL); |
|
} |
|
} |
|
|
|
ggml_set_scratch(ctx0, { |
|
0, |
|
scr0_size, |
|
scr0, |
|
}); |
|
|
|
|
|
{ |
|
inpL = ggml_norm(ctx0, inpL); |
|
|
|
|
|
inpL = ggml_add(ctx0, |
|
ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f_g, inpL), inpL), |
|
ggml_repeat(ctx0, model.ln_f_b, inpL)); |
|
} |
|
|
|
ggml_set_scratch(ctx0, { |
|
0, |
|
0, |
|
nullptr, |
|
}); |
|
|
|
|
|
{ |
|
inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL); |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
ggml_build_forward_expand(&gf, inpL); |
|
ggml_graph_compute(ctx0, &gf); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
embd_w.resize(n_vocab); |
|
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), |
|
sizeof(float) * n_vocab); |
|
|
|
if (mem_per_token == 0) { |
|
mem_per_token = ggml_used_mem(ctx0) / N; |
|
} |
|
|
|
|
|
ggml_free(ctx0); |
|
|
|
return true; |
|
} |
|
|
|
REGISTER_LLM(gpt_neox); |
|
|