File size: 7,949 Bytes
1cf2abd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
#include "ggml.h"
#include "llama.h"
#ifdef NDEBUG
#undef NDEBUG
#endif
#include <cmath>
#include <numeric>
#include <cassert>
#include <iostream>
#include <vector>
#include <algorithm>
void dump(const llama_token_data_array * candidates) {
for (size_t i = 0; i < candidates->size; i++) {
printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
}
}
#define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
void test_top_k(const std::vector<float> & probs,
const std::vector<float> & expected_probs,
int k) {
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p);
llama_sample_top_k(nullptr, &candidates_p, k, 1);
DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
}
}
void test_top_p(const std::vector<float> & probs,
const std::vector<float> & expected_probs,
float p) {
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p);
llama_sample_top_p(nullptr, &candidates_p, p, 1);
DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
void test_tfs(const std::vector<float> & probs,
const std::vector<float> & expected_probs,
float z) {
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
DUMP(&candidates_p);
llama_sample_tail_free(nullptr, &candidates_p, z, 1);
DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
void test_typical(const std::vector<float> & probs,
const std::vector<float> & expected_probs,
float p) {
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
DUMP(&candidates_p);
llama_sample_typical(nullptr, &candidates_p, p, 1);
DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
void test_repetition_penalty(
const std::vector<float> & probs,
const std::vector<llama_token> & last_tokens,
const std::vector<float> & expected_probs,
float penalty) {
assert(probs.size() == expected_probs.size());
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p);
llama_sample_repetition_penalty(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), penalty);
llama_sample_softmax(nullptr, &candidates_p);
DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-6);
}
}
void test_frequency_presence_penalty(
const std::vector<float> & probs,
const std::vector<llama_token> & last_tokens,
const std::vector<float> & expected_probs,
float alpha_frequency, float alpha_presence) {
assert(probs.size() == expected_probs.size());
size_t n_vocab = probs.size();
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
float logit = log(probs[token_id]);
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
llama_sample_softmax(nullptr, &candidates_p);
// DUMP(&candidates_p);
llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence);
llama_sample_softmax(nullptr, &candidates_p);
// DUMP(&candidates_p);
assert(candidates_p.size == expected_probs.size());
for (size_t i = 0; i < candidates_p.size; i++) {
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
}
}
int main(void) {
ggml_time_init();
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f);
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f);
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f);
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 5.0f, 5.0f);
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 5.0f, 5.0f);
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 5.0f, 5.0f);
printf("OK\n");
}
|