Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionPipeline, DPMSolverSinglestepScheduler | |
from PIL import Image | |
# Load a memory-efficient SD variant (under 12GB) | |
model_id = "runwayml/stable-diffusion-v1-5" | |
def load_model(): | |
pipe = StableDiffusionPipeline.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
use_safetensors=True | |
) | |
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config) | |
pipe = pipe.to("cpu") | |
pipe.enable_attention_slicing() # Reduces memory by 30% | |
pipe.enable_model_cpu_offload() # Only loads needed components | |
return pipe | |
def generate_character(prompt, seed=42): | |
try: | |
pipe = load_model() | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
with torch.inference_mode(): | |
image = pipe( | |
prompt=f"cartoon character {prompt}, vibrant colors, clean lines", | |
negative_prompt="blurry, deformed, ugly", | |
num_inference_steps=20, | |
guidance_scale=7.5, | |
width=512, | |
height=512, | |
generator=generator | |
).images[0] | |
return image | |
except Exception as e: | |
return f"Error: {str(e)}\nTry simplifying your prompt." | |
# Animation through img2img | |
def generate_animation(prompt, frames=3): | |
base_image = generate_character(prompt) | |
if isinstance(base_image, str): # If error | |
return base_image | |
images = [base_image] | |
pipe = load_model() | |
for i in range(1, frames): | |
result = pipe( | |
prompt=prompt, | |
image=images[-1], | |
strength=0.3, # Small changes per frame | |
generator=torch.Generator().manual_seed(i) | |
) | |
images.append(result.images[0]) | |
images[0].save( | |
"animation.gif", | |
save_all=True, | |
append_images=images[1:], | |
duration=500, | |
loop=0 | |
) | |
return "animation.gif" | |
with gr.Blocks(theme=gr.themes.Base()) as demo: | |
gr.Markdown("# π¬ Character Animator (12GB Optimized)") | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Character Description", | |
placeholder="e.g. 'cyberpunk fox wearing sunglasses'" | |
) | |
with gr.Tab("Single Image"): | |
img_out = gr.Image(label="Generated Character", type="pil") | |
gen_btn = gr.Button("Generate") | |
with gr.Tab("Animation"): | |
anim_out = gr.Image(label="Animation", format="gif") | |
anim_btn = gr.Button("Create Animation (3 frames)") | |
gen_btn.click(generate_character, inputs=prompt, outputs=img_out) | |
anim_btn.click(generate_animation, inputs=prompt, outputs=anim_out) | |
demo.launch() |