import gradio as gr import torch import whisper from transformers import pipeline ### ———————————————————————————————————————— title="Whisper to Emotion" ### ———————————————————————————————————————— whisper_model = whisper.load_model("medium") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") emotion_classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion') def translate_and_classify(audio): print(""" — Sending audio to Whisper ... — """) audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) _, probs = whisper_model.detect_language(mel) transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False) translate_options = whisper.DecodingOptions(task="translate", fp16 = False) transcription = whisper.decode(whisper_model, mel, transcript_options) translation = whisper.decode(whisper_model, mel, translate_options) print("Language Spoken: " + transcription.language) print("Transcript: " + transcription.text) print("Translated: " + translation.text) emotion = emotion_classifier(translation.text) detected_emotion = emotion[0]["label"] print("Detected Emotion: ", detected_emotion) return transcription.text, detected_emotion css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { display: none; margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } """ with gr.Blocks(css = css) as demo: gr.Markdown(""" ## Emotion Detection From Speech with Whisper """) gr.HTML('''
Whisper is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification. Combined with a emotion detection model,this allows for detecting emotion directly from speech in multiple languages and can potentially be used to analyze sentiment from customer calls.
''') with gr.Column(): #gr.Markdown(""" ### Record audio """) with gr.Tab("Record Audio"): audio_input_r = gr.Audio(label = 'Record Audio Input',source="microphone",type="filepath") transcribe_audio_r = gr.Button('Transcribe') with gr.Tab("Upload Audio as File"): audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath") transcribe_audio_u = gr.Button('Transcribe') with gr.Row(): transcript_output = gr.Textbox(label="Transcription in the language you spoke", lines = 3) emotion_output = gr.Textbox(label = "Detected Emotion") transcribe_audio_r.click(translate_and_classify, inputs = audio_input_r, outputs = [transcript_output,emotion_output]) transcribe_audio_u.click(translate_and_classify, inputs = audio_input_u, outputs = [transcript_output,emotion_output]) gr.HTML(''' ''') #gr.Markdown("") demo.launch()