Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import whisper | |
### ββββββββββββββββββββββββββββββββββββββββ | |
title="Whisper to Emotion" | |
### ββββββββββββββββββββββββββββββββββββββββ | |
whisper_model = whisper.load_model("small") | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
def translate(audio): | |
print(""" | |
β | |
Sending audio to Whisper ... | |
β | |
""") | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) | |
_, probs = whisper_model.detect_language(mel) | |
transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False) | |
translate_options = whisper.DecodingOptions(task="translate", fp16 = False) | |
transcription = whisper.decode(whisper_model, mel, transcript_options) | |
translation = whisper.decode(whisper_model, mel, translate_options) | |
print("Language Spoken: " + transcription.language) | |
print("Transcript: " + transcription.text) | |
print("Translated: " + translation.text) | |
return transcription.text | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# Emotion Detection From Speech Using Whisper | |
""") | |
audio_input = gr.Audio(label = 'Record Audio Input',source="microphone",type="filepath") | |
transcript_output = gr.Textbox(label="Transcription in your the language you spoke") | |
iface = gr.Interface(fn=translate, inputs=audio_input, outputs=transcript_output) | |
demo.launch() |