File size: 3,173 Bytes
0899e82
e0c2b71
 
f488509
e0c2b71
 
 
 
 
 
 
 
 
 
 
f488509
 
c6c6f6f
ddab9eb
7dd7859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6c6f6f
8b338c8
417aaff
 
7dd7859
dbe0d2a
 
ddab9eb
dd9eb54
77a2b12
 
 
 
 
 
dbe0d2a
3ccd8bb
 
c6c6f6f
a846d22
 
 
 
3ccd8bb
8b338c8
 
 
a846d22
8b338c8
a846d22
717ce50
 
77a2b12
 
717ce50
 
 
 
dbe0d2a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
import torch
import whisper
from transformers import pipeline

### β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

title="Whisper to Emotion"

### β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

whisper_model = whisper.load_model("small")

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

emotion_classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion')

def translate_and_classify(audio):
    
    print("""
    β€”
    Sending audio to Whisper ...
    β€”
    """)
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)
    
    mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
    
    _, probs = whisper_model.detect_language(mel)
    
    transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False)
    translate_options = whisper.DecodingOptions(task="translate", fp16 = False)
    
    transcription = whisper.decode(whisper_model, mel, transcript_options)
    translation = whisper.decode(whisper_model, mel, translate_options)
    
    print("Language Spoken: " + transcription.language)
    print("Transcript: " + transcription.text)  
    print("Translated: " + translation.text)
    
    emotion = emotion_classifier(translation.text)
    detected_emotion = emotion[0]["label"]
    return transcription.text, detected_emotion

with gr.Blocks() as demo:
    gr.Markdown("""
                ## Emotion Detection From Speech with Whisper
            """)
            
     gr.HTML(
     <p style="margin-bottom: 10px; font-size: 94%">
                Whisper is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification. This allows for detecting emotion directly from speech in multiple languages 
              </p>
              )
    
    with gr.Row():
        with gr.Column():
            #gr.Markdown(""" ### Record audio """)
            audio_input = gr.Audio(label = 'Record Audio Input',source="microphone",type="filepath")
            with gr.Row():
                transcribe_audio = gr.Button('Transcribe')
                
        with gr.Column():
            with gr.Row():
                transcript_output = gr.Textbox(label="Transcription in the language you spoke", lines = 3)
                emotion_output = gr.Textbox(label = "Detected Emotion")
    
    transcribe_audio.click(translate_and_classify, inputs = audio_input, outputs = [transcript_output,emotion_output])
    
    gr.HTML('''
        <div class="footer">
                    <p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> - Emotion Detection Model  
                    <a href="https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion" style="text-decoration: underline;" target="_blank">OpenAI</a>
                    </p>
        </div>
        ''')
    
    
demo.launch()