Spaces:
Runtime error
Runtime error
File size: 3,722 Bytes
3796a5e 382782b 7947ceb 3796a5e 7947ceb ff1d740 4094da1 ff1d740 91e84de ff1d740 057830c ff1d740 3796a5e 164ab71 3796a5e ff1d740 3796a5e 164ab71 3796a5e 9ec3e03 85df983 3796a5e 0ed9063 7a9a684 0ed9063 30e5c47 ff1d740 0ed9063 91e84de 0ed9063 5069bf5 0695967 0ed9063 91e84de 0ed9063 30e5c47 164ab71 0ed9063 164ab71 3796a5e 49e1c3f c52bc49 49e1c3f 59716dc 3796a5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
from pyChatGPT import ChatGPT
import gradio as gr
import os, json
from loguru import logger
import random
from transformers import pipeline
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
whisper = gr.Interface.load(name="spaces/sanchit-gandhi/whisper-large-v2")
openai_chatgpt = gr.Interface.load(name="spaces/anzorq/chatgpt-demo")
#input_message.submit([input_message, history], [input_message, chatbot, history])
def translate_or_transcribe(audio, task):
text_result = whisper(audio, None, task, fn_index=0)
return text_result
def get_response_from_chatbot(text, chat_history):
r = openai_chatgpt(message, chat_history)
response = "Sorry, the chatGPT queue is full. Please try again in some time"
return response
def chat(message, chat_history):
out_chat = []
if chat_history != '':
out_chat = json.loads(chat_history)
response = get_response_from_chatbot(message, chat_history)
out_chat.append((message, response))
chat_history = json.dumps(out_chat)
logger.info(f"out_chat_: {len(out_chat)}")
return out_chat, chat_history
with gr.Blocks(title='Talk to chatGPT') as demo:
gr.Markdown("## Talk to chatGPT with your voice in your native language ! ##")
with gr.Group(elem_id="page_2") as page_2:
with gr.Row(elem_id="chat_row"):
chatbot = gr.Chatbot(elem_id="chat_bot", visible=False).style(color_map=("green", "blue"))
chatbot1 = gr.Chatbot(elem_id="chat_bot1").style(color_map=("green", "blue"))
with gr.Row():
prompt_input_audio = gr.Audio(
source="microphone",
type="filepath",
label="Record Audio Input",
)
translate_btn = gr.Button("Check Whisper first ? π")
whisper_task = gr.Radio(["translate", "transcribe"], value="transcribe", show_label=False)
with gr.Row(elem_id="prompt_row"):
prompt_input = gr.Textbox(lines=2, label="Input text",show_label=True)
chat_history = gr.Textbox(lines=4, label="prompt", visible=False)
submit_btn = gr.Button(value = "Send to chatGPT",elem_id="submit-btn").style(
margin=True,
rounded=(True, True, True, True),
width=100
)
translate_btn.click(fn=translate_or_transcribe,
inputs=[prompt_input_audio,whisper_task],
outputs=prompt_input
)
submit_btn.click(fn=chat,
inputs=[prompt_input, chat_history],
outputs=[chatbot, chat_history],
)
gr.HTML('''
<p>Note: Please be aware that audio records from iOS devices will not be decoded as expected by Gradio. For the best experience, record your voice from a computer instead of your smartphone ;)</p>
<div class="footer">
<p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> -
<a href="https://chat.openai.com/chat" target="_blank">chatGPT</a> by <a href="https://openai.com/" style="text-decoration: underline;" target="_blank">OpenAI</a>
</p>
</div>
''')
gr.Markdown("")
demo.launch(debug = True) |