Spaces:
Runtime error
Runtime error
Commit
·
cb69642
1
Parent(s):
9bfa18a
Delete cldm
Browse files- cldm/cldm.py +0 -417
- cldm/model.py +0 -21
cldm/cldm.py
DELETED
@@ -1,417 +0,0 @@
|
|
1 |
-
import einops
|
2 |
-
import torch
|
3 |
-
import torch as th
|
4 |
-
import torch.nn as nn
|
5 |
-
|
6 |
-
from ldm.modules.diffusionmodules.util import (
|
7 |
-
conv_nd,
|
8 |
-
linear,
|
9 |
-
zero_module,
|
10 |
-
timestep_embedding,
|
11 |
-
)
|
12 |
-
|
13 |
-
from einops import rearrange, repeat
|
14 |
-
from torchvision.utils import make_grid
|
15 |
-
from ldm.modules.attention import SpatialTransformer
|
16 |
-
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
|
17 |
-
from ldm.models.diffusion.ddpm import LatentDiffusion
|
18 |
-
from ldm.util import log_txt_as_img, exists, instantiate_from_config
|
19 |
-
from ldm.models.diffusion.ddim import DDIMSampler
|
20 |
-
|
21 |
-
|
22 |
-
class ControlledUnetModel(UNetModel):
|
23 |
-
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
|
24 |
-
hs = []
|
25 |
-
with torch.no_grad():
|
26 |
-
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
27 |
-
emb = self.time_embed(t_emb)
|
28 |
-
h = x.type(self.dtype)
|
29 |
-
for module in self.input_blocks:
|
30 |
-
h = module(h, emb, context)
|
31 |
-
hs.append(h)
|
32 |
-
h = self.middle_block(h, emb, context)
|
33 |
-
|
34 |
-
h += control.pop()
|
35 |
-
|
36 |
-
for i, module in enumerate(self.output_blocks):
|
37 |
-
if only_mid_control:
|
38 |
-
h = torch.cat([h, hs.pop()], dim=1)
|
39 |
-
else:
|
40 |
-
h = torch.cat([h, hs.pop() + control.pop()], dim=1)
|
41 |
-
h = module(h, emb, context)
|
42 |
-
|
43 |
-
h = h.type(x.dtype)
|
44 |
-
return self.out(h)
|
45 |
-
|
46 |
-
|
47 |
-
class ControlNet(nn.Module):
|
48 |
-
def __init__(
|
49 |
-
self,
|
50 |
-
image_size,
|
51 |
-
in_channels,
|
52 |
-
model_channels,
|
53 |
-
hint_channels,
|
54 |
-
num_res_blocks,
|
55 |
-
attention_resolutions,
|
56 |
-
dropout=0,
|
57 |
-
channel_mult=(1, 2, 4, 8),
|
58 |
-
conv_resample=True,
|
59 |
-
dims=2,
|
60 |
-
use_checkpoint=False,
|
61 |
-
use_fp16=False,
|
62 |
-
num_heads=-1,
|
63 |
-
num_head_channels=-1,
|
64 |
-
num_heads_upsample=-1,
|
65 |
-
use_scale_shift_norm=False,
|
66 |
-
resblock_updown=False,
|
67 |
-
use_new_attention_order=False,
|
68 |
-
use_spatial_transformer=False, # custom transformer support
|
69 |
-
transformer_depth=1, # custom transformer support
|
70 |
-
context_dim=None, # custom transformer support
|
71 |
-
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
72 |
-
legacy=True,
|
73 |
-
disable_self_attentions=None,
|
74 |
-
num_attention_blocks=None,
|
75 |
-
disable_middle_self_attn=False,
|
76 |
-
use_linear_in_transformer=False,
|
77 |
-
):
|
78 |
-
super().__init__()
|
79 |
-
if use_spatial_transformer:
|
80 |
-
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
81 |
-
|
82 |
-
if context_dim is not None:
|
83 |
-
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
84 |
-
from omegaconf.listconfig import ListConfig
|
85 |
-
if type(context_dim) == ListConfig:
|
86 |
-
context_dim = list(context_dim)
|
87 |
-
|
88 |
-
if num_heads_upsample == -1:
|
89 |
-
num_heads_upsample = num_heads
|
90 |
-
|
91 |
-
if num_heads == -1:
|
92 |
-
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
93 |
-
|
94 |
-
if num_head_channels == -1:
|
95 |
-
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
96 |
-
|
97 |
-
self.dims = dims
|
98 |
-
self.image_size = image_size
|
99 |
-
self.in_channels = in_channels
|
100 |
-
self.model_channels = model_channels
|
101 |
-
if isinstance(num_res_blocks, int):
|
102 |
-
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
103 |
-
else:
|
104 |
-
if len(num_res_blocks) != len(channel_mult):
|
105 |
-
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
106 |
-
"as a list/tuple (per-level) with the same length as channel_mult")
|
107 |
-
self.num_res_blocks = num_res_blocks
|
108 |
-
if disable_self_attentions is not None:
|
109 |
-
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
110 |
-
assert len(disable_self_attentions) == len(channel_mult)
|
111 |
-
if num_attention_blocks is not None:
|
112 |
-
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
113 |
-
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
114 |
-
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
115 |
-
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
116 |
-
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
117 |
-
f"attention will still not be set.")
|
118 |
-
|
119 |
-
self.attention_resolutions = attention_resolutions
|
120 |
-
self.dropout = dropout
|
121 |
-
self.channel_mult = channel_mult
|
122 |
-
self.conv_resample = conv_resample
|
123 |
-
self.use_checkpoint = use_checkpoint
|
124 |
-
self.dtype = th.float16 if use_fp16 else th.float32
|
125 |
-
self.num_heads = num_heads
|
126 |
-
self.num_head_channels = num_head_channels
|
127 |
-
self.num_heads_upsample = num_heads_upsample
|
128 |
-
self.predict_codebook_ids = n_embed is not None
|
129 |
-
|
130 |
-
time_embed_dim = model_channels * 4
|
131 |
-
self.time_embed = nn.Sequential(
|
132 |
-
linear(model_channels, time_embed_dim),
|
133 |
-
nn.SiLU(),
|
134 |
-
linear(time_embed_dim, time_embed_dim),
|
135 |
-
)
|
136 |
-
|
137 |
-
self.input_blocks = nn.ModuleList(
|
138 |
-
[
|
139 |
-
TimestepEmbedSequential(
|
140 |
-
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
141 |
-
)
|
142 |
-
]
|
143 |
-
)
|
144 |
-
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
|
145 |
-
|
146 |
-
self.input_hint_block = TimestepEmbedSequential(
|
147 |
-
conv_nd(dims, hint_channels, 16, 3, padding=1),
|
148 |
-
nn.SiLU(),
|
149 |
-
conv_nd(dims, 16, 16, 3, padding=1),
|
150 |
-
nn.SiLU(),
|
151 |
-
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
152 |
-
nn.SiLU(),
|
153 |
-
conv_nd(dims, 32, 32, 3, padding=1),
|
154 |
-
nn.SiLU(),
|
155 |
-
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
|
156 |
-
nn.SiLU(),
|
157 |
-
conv_nd(dims, 96, 96, 3, padding=1),
|
158 |
-
nn.SiLU(),
|
159 |
-
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
|
160 |
-
nn.SiLU(),
|
161 |
-
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
162 |
-
)
|
163 |
-
|
164 |
-
self._feature_size = model_channels
|
165 |
-
input_block_chans = [model_channels]
|
166 |
-
ch = model_channels
|
167 |
-
ds = 1
|
168 |
-
for level, mult in enumerate(channel_mult):
|
169 |
-
for nr in range(self.num_res_blocks[level]):
|
170 |
-
layers = [
|
171 |
-
ResBlock(
|
172 |
-
ch,
|
173 |
-
time_embed_dim,
|
174 |
-
dropout,
|
175 |
-
out_channels=mult * model_channels,
|
176 |
-
dims=dims,
|
177 |
-
use_checkpoint=use_checkpoint,
|
178 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
179 |
-
)
|
180 |
-
]
|
181 |
-
ch = mult * model_channels
|
182 |
-
if ds in attention_resolutions:
|
183 |
-
if num_head_channels == -1:
|
184 |
-
dim_head = ch // num_heads
|
185 |
-
else:
|
186 |
-
num_heads = ch // num_head_channels
|
187 |
-
dim_head = num_head_channels
|
188 |
-
if legacy:
|
189 |
-
#num_heads = 1
|
190 |
-
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
191 |
-
if exists(disable_self_attentions):
|
192 |
-
disabled_sa = disable_self_attentions[level]
|
193 |
-
else:
|
194 |
-
disabled_sa = False
|
195 |
-
|
196 |
-
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
197 |
-
layers.append(
|
198 |
-
AttentionBlock(
|
199 |
-
ch,
|
200 |
-
use_checkpoint=use_checkpoint,
|
201 |
-
num_heads=num_heads,
|
202 |
-
num_head_channels=dim_head,
|
203 |
-
use_new_attention_order=use_new_attention_order,
|
204 |
-
) if not use_spatial_transformer else SpatialTransformer(
|
205 |
-
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
206 |
-
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
207 |
-
use_checkpoint=use_checkpoint
|
208 |
-
)
|
209 |
-
)
|
210 |
-
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
211 |
-
self.zero_convs.append(self.make_zero_conv(ch))
|
212 |
-
self._feature_size += ch
|
213 |
-
input_block_chans.append(ch)
|
214 |
-
if level != len(channel_mult) - 1:
|
215 |
-
out_ch = ch
|
216 |
-
self.input_blocks.append(
|
217 |
-
TimestepEmbedSequential(
|
218 |
-
ResBlock(
|
219 |
-
ch,
|
220 |
-
time_embed_dim,
|
221 |
-
dropout,
|
222 |
-
out_channels=out_ch,
|
223 |
-
dims=dims,
|
224 |
-
use_checkpoint=use_checkpoint,
|
225 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
226 |
-
down=True,
|
227 |
-
)
|
228 |
-
if resblock_updown
|
229 |
-
else Downsample(
|
230 |
-
ch, conv_resample, dims=dims, out_channels=out_ch
|
231 |
-
)
|
232 |
-
)
|
233 |
-
)
|
234 |
-
ch = out_ch
|
235 |
-
input_block_chans.append(ch)
|
236 |
-
self.zero_convs.append(self.make_zero_conv(ch))
|
237 |
-
ds *= 2
|
238 |
-
self._feature_size += ch
|
239 |
-
|
240 |
-
if num_head_channels == -1:
|
241 |
-
dim_head = ch // num_heads
|
242 |
-
else:
|
243 |
-
num_heads = ch // num_head_channels
|
244 |
-
dim_head = num_head_channels
|
245 |
-
if legacy:
|
246 |
-
#num_heads = 1
|
247 |
-
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
248 |
-
self.middle_block = TimestepEmbedSequential(
|
249 |
-
ResBlock(
|
250 |
-
ch,
|
251 |
-
time_embed_dim,
|
252 |
-
dropout,
|
253 |
-
dims=dims,
|
254 |
-
use_checkpoint=use_checkpoint,
|
255 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
256 |
-
),
|
257 |
-
AttentionBlock(
|
258 |
-
ch,
|
259 |
-
use_checkpoint=use_checkpoint,
|
260 |
-
num_heads=num_heads,
|
261 |
-
num_head_channels=dim_head,
|
262 |
-
use_new_attention_order=use_new_attention_order,
|
263 |
-
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
264 |
-
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
265 |
-
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
266 |
-
use_checkpoint=use_checkpoint
|
267 |
-
),
|
268 |
-
ResBlock(
|
269 |
-
ch,
|
270 |
-
time_embed_dim,
|
271 |
-
dropout,
|
272 |
-
dims=dims,
|
273 |
-
use_checkpoint=use_checkpoint,
|
274 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
275 |
-
),
|
276 |
-
)
|
277 |
-
self.middle_block_out = self.make_zero_conv(ch)
|
278 |
-
self._feature_size += ch
|
279 |
-
|
280 |
-
def make_zero_conv(self, channels):
|
281 |
-
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
|
282 |
-
|
283 |
-
def forward(self, x, hint, timesteps, context, **kwargs):
|
284 |
-
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
285 |
-
emb = self.time_embed(t_emb)
|
286 |
-
|
287 |
-
guided_hint = self.input_hint_block(hint, emb, context)
|
288 |
-
|
289 |
-
outs = []
|
290 |
-
|
291 |
-
h = x.type(self.dtype)
|
292 |
-
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
293 |
-
if guided_hint is not None:
|
294 |
-
h = module(h, emb, context)
|
295 |
-
h += guided_hint
|
296 |
-
guided_hint = None
|
297 |
-
else:
|
298 |
-
h = module(h, emb, context)
|
299 |
-
outs.append(zero_conv(h, emb, context))
|
300 |
-
|
301 |
-
h = self.middle_block(h, emb, context)
|
302 |
-
outs.append(self.middle_block_out(h, emb, context))
|
303 |
-
|
304 |
-
return outs
|
305 |
-
|
306 |
-
|
307 |
-
class ControlLDM(LatentDiffusion):
|
308 |
-
|
309 |
-
def __init__(self, control_stage_config, control_key, only_mid_control, *args, **kwargs):
|
310 |
-
super().__init__(*args, **kwargs)
|
311 |
-
self.control_model = instantiate_from_config(control_stage_config)
|
312 |
-
self.control_key = control_key
|
313 |
-
self.only_mid_control = only_mid_control
|
314 |
-
|
315 |
-
@torch.no_grad()
|
316 |
-
def get_input(self, batch, k, bs=None, *args, **kwargs):
|
317 |
-
x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
|
318 |
-
control = batch[self.control_key]
|
319 |
-
if bs is not None:
|
320 |
-
control = control[:bs]
|
321 |
-
control = control.to(self.device)
|
322 |
-
control = einops.rearrange(control, 'b h w c -> b c h w')
|
323 |
-
control = control.to(memory_format=torch.contiguous_format).float()
|
324 |
-
return x, dict(c_crossattn=[c], c_concat=[control])
|
325 |
-
|
326 |
-
def apply_model(self, x_noisy, t, cond, *args, **kwargs):
|
327 |
-
assert isinstance(cond, dict)
|
328 |
-
diffusion_model = self.model.diffusion_model
|
329 |
-
cond_txt = torch.cat(cond['c_crossattn'], 1)
|
330 |
-
cond_hint = torch.cat(cond['c_concat'], 1)
|
331 |
-
|
332 |
-
control = self.control_model(x=x_noisy, hint=cond_hint, timesteps=t, context=cond_txt)
|
333 |
-
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control)
|
334 |
-
|
335 |
-
return eps
|
336 |
-
|
337 |
-
@torch.no_grad()
|
338 |
-
def get_unconditional_conditioning(self, N):
|
339 |
-
return self.get_learned_conditioning([""] * N)
|
340 |
-
|
341 |
-
@torch.no_grad()
|
342 |
-
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
|
343 |
-
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
344 |
-
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
|
345 |
-
use_ema_scope=True,
|
346 |
-
**kwargs):
|
347 |
-
use_ddim = ddim_steps is not None
|
348 |
-
|
349 |
-
log = dict()
|
350 |
-
z, c = self.get_input(batch, self.first_stage_key, bs=N)
|
351 |
-
c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N]
|
352 |
-
N = min(z.shape[0], N)
|
353 |
-
n_row = min(z.shape[0], n_row)
|
354 |
-
log["reconstruction"] = self.decode_first_stage(z)
|
355 |
-
log["control"] = c_cat * 2.0 - 1.0
|
356 |
-
log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16)
|
357 |
-
|
358 |
-
if plot_diffusion_rows:
|
359 |
-
# get diffusion row
|
360 |
-
diffusion_row = list()
|
361 |
-
z_start = z[:n_row]
|
362 |
-
for t in range(self.num_timesteps):
|
363 |
-
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
364 |
-
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
365 |
-
t = t.to(self.device).long()
|
366 |
-
noise = torch.randn_like(z_start)
|
367 |
-
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
368 |
-
diffusion_row.append(self.decode_first_stage(z_noisy))
|
369 |
-
|
370 |
-
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
371 |
-
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
372 |
-
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
373 |
-
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
374 |
-
log["diffusion_row"] = diffusion_grid
|
375 |
-
|
376 |
-
if sample:
|
377 |
-
# get denoise row
|
378 |
-
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
379 |
-
batch_size=N, ddim=use_ddim,
|
380 |
-
ddim_steps=ddim_steps, eta=ddim_eta)
|
381 |
-
x_samples = self.decode_first_stage(samples)
|
382 |
-
log["samples"] = x_samples
|
383 |
-
if plot_denoise_rows:
|
384 |
-
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
385 |
-
log["denoise_row"] = denoise_grid
|
386 |
-
|
387 |
-
if unconditional_guidance_scale > 1.0:
|
388 |
-
uc_cross = self.get_unconditional_conditioning(N)
|
389 |
-
uc_cat = c_cat # torch.zeros_like(c_cat)
|
390 |
-
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
391 |
-
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
392 |
-
batch_size=N, ddim=use_ddim,
|
393 |
-
ddim_steps=ddim_steps, eta=ddim_eta,
|
394 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
395 |
-
unconditional_conditioning=uc_full,
|
396 |
-
)
|
397 |
-
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
398 |
-
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
399 |
-
|
400 |
-
return log
|
401 |
-
|
402 |
-
@torch.no_grad()
|
403 |
-
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
|
404 |
-
ddim_sampler = DDIMSampler(self)
|
405 |
-
b, c, h, w = cond["c_concat"][0].shape
|
406 |
-
shape = (self.channels, h // 8, w // 8)
|
407 |
-
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs)
|
408 |
-
return samples, intermediates
|
409 |
-
|
410 |
-
def configure_optimizers(self):
|
411 |
-
lr = self.learning_rate
|
412 |
-
params = list(self.control_model.parameters())
|
413 |
-
if not self.sd_locked:
|
414 |
-
params += list(self.model.diffusion_model.output_blocks.parameters())
|
415 |
-
params += list(self.model.diffusion_model.out.parameters())
|
416 |
-
opt = torch.optim.AdamW(params, lr=lr)
|
417 |
-
return opt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cldm/model.py
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
from omegaconf import OmegaConf
|
4 |
-
from ldm.util import instantiate_from_config
|
5 |
-
|
6 |
-
|
7 |
-
def get_state_dict(d):
|
8 |
-
return d.get('state_dict', d)
|
9 |
-
|
10 |
-
|
11 |
-
def load_state_dict(ckpt_path, location='cpu'):
|
12 |
-
state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
|
13 |
-
print(f'Loaded state_dict from [{ckpt_path}]')
|
14 |
-
return state_dict
|
15 |
-
|
16 |
-
|
17 |
-
def create_model(config_path):
|
18 |
-
config = OmegaConf.load(config_path)
|
19 |
-
model = instantiate_from_config(config.model).cpu()
|
20 |
-
print(f'Loaded model config from [{config_path}]')
|
21 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|