RamAnanth1 commited on
Commit
c8b056d
·
1 Parent(s): d4f714d

Delete annotator

Browse files
annotator/openpose/__init__.py DELETED
@@ -1,31 +0,0 @@
1
- import os
2
- os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
3
-
4
- import torch
5
- import numpy as np
6
- from . import util
7
- from .body import Body
8
- from .hand import Hand
9
-
10
- from huggingface_hub import hf_hub_url, cached_download
11
- REPO_ID = "lllyasviel/ControlNet"
12
- body_estimation = Body(cached_download(hf_hub_url(REPO_ID, 'annotator/ckpts/body_pose_model.pth')))
13
- hand_estimation = Hand(cached_download(hf_hub_url(REPO_ID,'annotator/ckpts/hand_pose_model.pth')))
14
-
15
-
16
- def apply_openpose(oriImg, hand=False):
17
- oriImg = oriImg[:, :, ::-1].copy()
18
- with torch.no_grad():
19
- candidate, subset = body_estimation(oriImg)
20
- canvas = np.zeros_like(oriImg)
21
- canvas = util.draw_bodypose(canvas, candidate, subset)
22
- if hand:
23
- hands_list = util.handDetect(candidate, subset, oriImg)
24
- all_hand_peaks = []
25
- for x, y, w, is_left in hands_list:
26
- peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
27
- peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x)
28
- peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y)
29
- all_hand_peaks.append(peaks)
30
- canvas = util.draw_handpose(canvas, all_hand_peaks)
31
- return canvas, dict(candidate=candidate.tolist(), subset=subset.tolist())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
annotator/openpose/body.py DELETED
@@ -1,219 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- import math
4
- import time
5
- from scipy.ndimage.filters import gaussian_filter
6
- import matplotlib.pyplot as plt
7
- import matplotlib
8
- import torch
9
- from torchvision import transforms
10
-
11
- from . import util
12
- from .model import bodypose_model
13
-
14
- class Body(object):
15
- def __init__(self, model_path):
16
- self.model = bodypose_model()
17
- if torch.cuda.is_available():
18
- self.model = self.model.cuda()
19
- print('cuda')
20
- model_dict = util.transfer(self.model, torch.load(model_path))
21
- self.model.load_state_dict(model_dict)
22
- self.model.eval()
23
-
24
- def __call__(self, oriImg):
25
- # scale_search = [0.5, 1.0, 1.5, 2.0]
26
- scale_search = [0.5]
27
- boxsize = 368
28
- stride = 8
29
- padValue = 128
30
- thre1 = 0.1
31
- thre2 = 0.05
32
- multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
33
- heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
34
- paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
35
-
36
- for m in range(len(multiplier)):
37
- scale = multiplier[m]
38
- imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
39
- imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
40
- im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
41
- im = np.ascontiguousarray(im)
42
-
43
- data = torch.from_numpy(im).float()
44
- if torch.cuda.is_available():
45
- data = data.cuda()
46
- # data = data.permute([2, 0, 1]).unsqueeze(0).float()
47
- with torch.no_grad():
48
- Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
49
- Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
50
- Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
51
-
52
- # extract outputs, resize, and remove padding
53
- # heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
54
- heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
55
- heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
56
- heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
57
- heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
58
-
59
- # paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
60
- paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
61
- paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
62
- paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
63
- paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
64
-
65
- heatmap_avg += heatmap_avg + heatmap / len(multiplier)
66
- paf_avg += + paf / len(multiplier)
67
-
68
- all_peaks = []
69
- peak_counter = 0
70
-
71
- for part in range(18):
72
- map_ori = heatmap_avg[:, :, part]
73
- one_heatmap = gaussian_filter(map_ori, sigma=3)
74
-
75
- map_left = np.zeros(one_heatmap.shape)
76
- map_left[1:, :] = one_heatmap[:-1, :]
77
- map_right = np.zeros(one_heatmap.shape)
78
- map_right[:-1, :] = one_heatmap[1:, :]
79
- map_up = np.zeros(one_heatmap.shape)
80
- map_up[:, 1:] = one_heatmap[:, :-1]
81
- map_down = np.zeros(one_heatmap.shape)
82
- map_down[:, :-1] = one_heatmap[:, 1:]
83
-
84
- peaks_binary = np.logical_and.reduce(
85
- (one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
86
- peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
87
- peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
88
- peak_id = range(peak_counter, peak_counter + len(peaks))
89
- peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
90
-
91
- all_peaks.append(peaks_with_score_and_id)
92
- peak_counter += len(peaks)
93
-
94
- # find connection in the specified sequence, center 29 is in the position 15
95
- limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
96
- [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
97
- [1, 16], [16, 18], [3, 17], [6, 18]]
98
- # the middle joints heatmap correpondence
99
- mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
100
- [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
101
- [55, 56], [37, 38], [45, 46]]
102
-
103
- connection_all = []
104
- special_k = []
105
- mid_num = 10
106
-
107
- for k in range(len(mapIdx)):
108
- score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
109
- candA = all_peaks[limbSeq[k][0] - 1]
110
- candB = all_peaks[limbSeq[k][1] - 1]
111
- nA = len(candA)
112
- nB = len(candB)
113
- indexA, indexB = limbSeq[k]
114
- if (nA != 0 and nB != 0):
115
- connection_candidate = []
116
- for i in range(nA):
117
- for j in range(nB):
118
- vec = np.subtract(candB[j][:2], candA[i][:2])
119
- norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
120
- norm = max(0.001, norm)
121
- vec = np.divide(vec, norm)
122
-
123
- startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
124
- np.linspace(candA[i][1], candB[j][1], num=mid_num)))
125
-
126
- vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
127
- for I in range(len(startend))])
128
- vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
129
- for I in range(len(startend))])
130
-
131
- score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
132
- score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
133
- 0.5 * oriImg.shape[0] / norm - 1, 0)
134
- criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
135
- criterion2 = score_with_dist_prior > 0
136
- if criterion1 and criterion2:
137
- connection_candidate.append(
138
- [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
139
-
140
- connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
141
- connection = np.zeros((0, 5))
142
- for c in range(len(connection_candidate)):
143
- i, j, s = connection_candidate[c][0:3]
144
- if (i not in connection[:, 3] and j not in connection[:, 4]):
145
- connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
146
- if (len(connection) >= min(nA, nB)):
147
- break
148
-
149
- connection_all.append(connection)
150
- else:
151
- special_k.append(k)
152
- connection_all.append([])
153
-
154
- # last number in each row is the total parts number of that person
155
- # the second last number in each row is the score of the overall configuration
156
- subset = -1 * np.ones((0, 20))
157
- candidate = np.array([item for sublist in all_peaks for item in sublist])
158
-
159
- for k in range(len(mapIdx)):
160
- if k not in special_k:
161
- partAs = connection_all[k][:, 0]
162
- partBs = connection_all[k][:, 1]
163
- indexA, indexB = np.array(limbSeq[k]) - 1
164
-
165
- for i in range(len(connection_all[k])): # = 1:size(temp,1)
166
- found = 0
167
- subset_idx = [-1, -1]
168
- for j in range(len(subset)): # 1:size(subset,1):
169
- if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
170
- subset_idx[found] = j
171
- found += 1
172
-
173
- if found == 1:
174
- j = subset_idx[0]
175
- if subset[j][indexB] != partBs[i]:
176
- subset[j][indexB] = partBs[i]
177
- subset[j][-1] += 1
178
- subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
179
- elif found == 2: # if found 2 and disjoint, merge them
180
- j1, j2 = subset_idx
181
- membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
182
- if len(np.nonzero(membership == 2)[0]) == 0: # merge
183
- subset[j1][:-2] += (subset[j2][:-2] + 1)
184
- subset[j1][-2:] += subset[j2][-2:]
185
- subset[j1][-2] += connection_all[k][i][2]
186
- subset = np.delete(subset, j2, 0)
187
- else: # as like found == 1
188
- subset[j1][indexB] = partBs[i]
189
- subset[j1][-1] += 1
190
- subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
191
-
192
- # if find no partA in the subset, create a new subset
193
- elif not found and k < 17:
194
- row = -1 * np.ones(20)
195
- row[indexA] = partAs[i]
196
- row[indexB] = partBs[i]
197
- row[-1] = 2
198
- row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
199
- subset = np.vstack([subset, row])
200
- # delete some rows of subset which has few parts occur
201
- deleteIdx = []
202
- for i in range(len(subset)):
203
- if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
204
- deleteIdx.append(i)
205
- subset = np.delete(subset, deleteIdx, axis=0)
206
-
207
- # subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
208
- # candidate: x, y, score, id
209
- return candidate, subset
210
-
211
- if __name__ == "__main__":
212
- body_estimation = Body('../model/body_pose_model.pth')
213
-
214
- test_image = '../images/ski.jpg'
215
- oriImg = cv2.imread(test_image) # B,G,R order
216
- candidate, subset = body_estimation(oriImg)
217
- canvas = util.draw_bodypose(oriImg, candidate, subset)
218
- plt.imshow(canvas[:, :, [2, 1, 0]])
219
- plt.show()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
annotator/openpose/hand.py DELETED
@@ -1,86 +0,0 @@
1
- import cv2
2
- import json
3
- import numpy as np
4
- import math
5
- import time
6
- from scipy.ndimage.filters import gaussian_filter
7
- import matplotlib.pyplot as plt
8
- import matplotlib
9
- import torch
10
- from skimage.measure import label
11
-
12
- from .model import handpose_model
13
- from . import util
14
-
15
- class Hand(object):
16
- def __init__(self, model_path):
17
- self.model = handpose_model()
18
- if torch.cuda.is_available():
19
- self.model = self.model.cuda()
20
- print('cuda')
21
- model_dict = util.transfer(self.model, torch.load(model_path))
22
- self.model.load_state_dict(model_dict)
23
- self.model.eval()
24
-
25
- def __call__(self, oriImg):
26
- scale_search = [0.5, 1.0, 1.5, 2.0]
27
- # scale_search = [0.5]
28
- boxsize = 368
29
- stride = 8
30
- padValue = 128
31
- thre = 0.05
32
- multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
33
- heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22))
34
- # paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
35
-
36
- for m in range(len(multiplier)):
37
- scale = multiplier[m]
38
- imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
39
- imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
40
- im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
41
- im = np.ascontiguousarray(im)
42
-
43
- data = torch.from_numpy(im).float()
44
- if torch.cuda.is_available():
45
- data = data.cuda()
46
- # data = data.permute([2, 0, 1]).unsqueeze(0).float()
47
- with torch.no_grad():
48
- output = self.model(data).cpu().numpy()
49
- # output = self.model(data).numpy()q
50
-
51
- # extract outputs, resize, and remove padding
52
- heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps
53
- heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
54
- heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
55
- heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
56
-
57
- heatmap_avg += heatmap / len(multiplier)
58
-
59
- all_peaks = []
60
- for part in range(21):
61
- map_ori = heatmap_avg[:, :, part]
62
- one_heatmap = gaussian_filter(map_ori, sigma=3)
63
- binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
64
- # 全部小于阈值
65
- if np.sum(binary) == 0:
66
- all_peaks.append([0, 0])
67
- continue
68
- label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim)
69
- max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1
70
- label_img[label_img != max_index] = 0
71
- map_ori[label_img == 0] = 0
72
-
73
- y, x = util.npmax(map_ori)
74
- all_peaks.append([x, y])
75
- return np.array(all_peaks)
76
-
77
- if __name__ == "__main__":
78
- hand_estimation = Hand('../model/hand_pose_model.pth')
79
-
80
- # test_image = '../images/hand.jpg'
81
- test_image = '../images/hand.jpg'
82
- oriImg = cv2.imread(test_image) # B,G,R order
83
- peaks = hand_estimation(oriImg)
84
- canvas = util.draw_handpose(oriImg, peaks, True)
85
- cv2.imshow('', canvas)
86
- cv2.waitKey(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
annotator/openpose/model.py DELETED
@@ -1,219 +0,0 @@
1
- import torch
2
- from collections import OrderedDict
3
-
4
- import torch
5
- import torch.nn as nn
6
-
7
- def make_layers(block, no_relu_layers):
8
- layers = []
9
- for layer_name, v in block.items():
10
- if 'pool' in layer_name:
11
- layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1],
12
- padding=v[2])
13
- layers.append((layer_name, layer))
14
- else:
15
- conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1],
16
- kernel_size=v[2], stride=v[3],
17
- padding=v[4])
18
- layers.append((layer_name, conv2d))
19
- if layer_name not in no_relu_layers:
20
- layers.append(('relu_'+layer_name, nn.ReLU(inplace=True)))
21
-
22
- return nn.Sequential(OrderedDict(layers))
23
-
24
- class bodypose_model(nn.Module):
25
- def __init__(self):
26
- super(bodypose_model, self).__init__()
27
-
28
- # these layers have no relu layer
29
- no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\
30
- 'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\
31
- 'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\
32
- 'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1']
33
- blocks = {}
34
- block0 = OrderedDict([
35
- ('conv1_1', [3, 64, 3, 1, 1]),
36
- ('conv1_2', [64, 64, 3, 1, 1]),
37
- ('pool1_stage1', [2, 2, 0]),
38
- ('conv2_1', [64, 128, 3, 1, 1]),
39
- ('conv2_2', [128, 128, 3, 1, 1]),
40
- ('pool2_stage1', [2, 2, 0]),
41
- ('conv3_1', [128, 256, 3, 1, 1]),
42
- ('conv3_2', [256, 256, 3, 1, 1]),
43
- ('conv3_3', [256, 256, 3, 1, 1]),
44
- ('conv3_4', [256, 256, 3, 1, 1]),
45
- ('pool3_stage1', [2, 2, 0]),
46
- ('conv4_1', [256, 512, 3, 1, 1]),
47
- ('conv4_2', [512, 512, 3, 1, 1]),
48
- ('conv4_3_CPM', [512, 256, 3, 1, 1]),
49
- ('conv4_4_CPM', [256, 128, 3, 1, 1])
50
- ])
51
-
52
-
53
- # Stage 1
54
- block1_1 = OrderedDict([
55
- ('conv5_1_CPM_L1', [128, 128, 3, 1, 1]),
56
- ('conv5_2_CPM_L1', [128, 128, 3, 1, 1]),
57
- ('conv5_3_CPM_L1', [128, 128, 3, 1, 1]),
58
- ('conv5_4_CPM_L1', [128, 512, 1, 1, 0]),
59
- ('conv5_5_CPM_L1', [512, 38, 1, 1, 0])
60
- ])
61
-
62
- block1_2 = OrderedDict([
63
- ('conv5_1_CPM_L2', [128, 128, 3, 1, 1]),
64
- ('conv5_2_CPM_L2', [128, 128, 3, 1, 1]),
65
- ('conv5_3_CPM_L2', [128, 128, 3, 1, 1]),
66
- ('conv5_4_CPM_L2', [128, 512, 1, 1, 0]),
67
- ('conv5_5_CPM_L2', [512, 19, 1, 1, 0])
68
- ])
69
- blocks['block1_1'] = block1_1
70
- blocks['block1_2'] = block1_2
71
-
72
- self.model0 = make_layers(block0, no_relu_layers)
73
-
74
- # Stages 2 - 6
75
- for i in range(2, 7):
76
- blocks['block%d_1' % i] = OrderedDict([
77
- ('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]),
78
- ('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]),
79
- ('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]),
80
- ('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]),
81
- ('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]),
82
- ('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]),
83
- ('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0])
84
- ])
85
-
86
- blocks['block%d_2' % i] = OrderedDict([
87
- ('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]),
88
- ('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]),
89
- ('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]),
90
- ('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]),
91
- ('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]),
92
- ('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]),
93
- ('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0])
94
- ])
95
-
96
- for k in blocks.keys():
97
- blocks[k] = make_layers(blocks[k], no_relu_layers)
98
-
99
- self.model1_1 = blocks['block1_1']
100
- self.model2_1 = blocks['block2_1']
101
- self.model3_1 = blocks['block3_1']
102
- self.model4_1 = blocks['block4_1']
103
- self.model5_1 = blocks['block5_1']
104
- self.model6_1 = blocks['block6_1']
105
-
106
- self.model1_2 = blocks['block1_2']
107
- self.model2_2 = blocks['block2_2']
108
- self.model3_2 = blocks['block3_2']
109
- self.model4_2 = blocks['block4_2']
110
- self.model5_2 = blocks['block5_2']
111
- self.model6_2 = blocks['block6_2']
112
-
113
-
114
- def forward(self, x):
115
-
116
- out1 = self.model0(x)
117
-
118
- out1_1 = self.model1_1(out1)
119
- out1_2 = self.model1_2(out1)
120
- out2 = torch.cat([out1_1, out1_2, out1], 1)
121
-
122
- out2_1 = self.model2_1(out2)
123
- out2_2 = self.model2_2(out2)
124
- out3 = torch.cat([out2_1, out2_2, out1], 1)
125
-
126
- out3_1 = self.model3_1(out3)
127
- out3_2 = self.model3_2(out3)
128
- out4 = torch.cat([out3_1, out3_2, out1], 1)
129
-
130
- out4_1 = self.model4_1(out4)
131
- out4_2 = self.model4_2(out4)
132
- out5 = torch.cat([out4_1, out4_2, out1], 1)
133
-
134
- out5_1 = self.model5_1(out5)
135
- out5_2 = self.model5_2(out5)
136
- out6 = torch.cat([out5_1, out5_2, out1], 1)
137
-
138
- out6_1 = self.model6_1(out6)
139
- out6_2 = self.model6_2(out6)
140
-
141
- return out6_1, out6_2
142
-
143
- class handpose_model(nn.Module):
144
- def __init__(self):
145
- super(handpose_model, self).__init__()
146
-
147
- # these layers have no relu layer
148
- no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\
149
- 'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6']
150
- # stage 1
151
- block1_0 = OrderedDict([
152
- ('conv1_1', [3, 64, 3, 1, 1]),
153
- ('conv1_2', [64, 64, 3, 1, 1]),
154
- ('pool1_stage1', [2, 2, 0]),
155
- ('conv2_1', [64, 128, 3, 1, 1]),
156
- ('conv2_2', [128, 128, 3, 1, 1]),
157
- ('pool2_stage1', [2, 2, 0]),
158
- ('conv3_1', [128, 256, 3, 1, 1]),
159
- ('conv3_2', [256, 256, 3, 1, 1]),
160
- ('conv3_3', [256, 256, 3, 1, 1]),
161
- ('conv3_4', [256, 256, 3, 1, 1]),
162
- ('pool3_stage1', [2, 2, 0]),
163
- ('conv4_1', [256, 512, 3, 1, 1]),
164
- ('conv4_2', [512, 512, 3, 1, 1]),
165
- ('conv4_3', [512, 512, 3, 1, 1]),
166
- ('conv4_4', [512, 512, 3, 1, 1]),
167
- ('conv5_1', [512, 512, 3, 1, 1]),
168
- ('conv5_2', [512, 512, 3, 1, 1]),
169
- ('conv5_3_CPM', [512, 128, 3, 1, 1])
170
- ])
171
-
172
- block1_1 = OrderedDict([
173
- ('conv6_1_CPM', [128, 512, 1, 1, 0]),
174
- ('conv6_2_CPM', [512, 22, 1, 1, 0])
175
- ])
176
-
177
- blocks = {}
178
- blocks['block1_0'] = block1_0
179
- blocks['block1_1'] = block1_1
180
-
181
- # stage 2-6
182
- for i in range(2, 7):
183
- blocks['block%d' % i] = OrderedDict([
184
- ('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]),
185
- ('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]),
186
- ('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]),
187
- ('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]),
188
- ('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]),
189
- ('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]),
190
- ('Mconv7_stage%d' % i, [128, 22, 1, 1, 0])
191
- ])
192
-
193
- for k in blocks.keys():
194
- blocks[k] = make_layers(blocks[k], no_relu_layers)
195
-
196
- self.model1_0 = blocks['block1_0']
197
- self.model1_1 = blocks['block1_1']
198
- self.model2 = blocks['block2']
199
- self.model3 = blocks['block3']
200
- self.model4 = blocks['block4']
201
- self.model5 = blocks['block5']
202
- self.model6 = blocks['block6']
203
-
204
- def forward(self, x):
205
- out1_0 = self.model1_0(x)
206
- out1_1 = self.model1_1(out1_0)
207
- concat_stage2 = torch.cat([out1_1, out1_0], 1)
208
- out_stage2 = self.model2(concat_stage2)
209
- concat_stage3 = torch.cat([out_stage2, out1_0], 1)
210
- out_stage3 = self.model3(concat_stage3)
211
- concat_stage4 = torch.cat([out_stage3, out1_0], 1)
212
- out_stage4 = self.model4(concat_stage4)
213
- concat_stage5 = torch.cat([out_stage4, out1_0], 1)
214
- out_stage5 = self.model5(concat_stage5)
215
- concat_stage6 = torch.cat([out_stage5, out1_0], 1)
216
- out_stage6 = self.model6(concat_stage6)
217
- return out_stage6
218
-
219
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
annotator/openpose/util.py DELETED
@@ -1,164 +0,0 @@
1
- import math
2
- import numpy as np
3
- import matplotlib
4
- import cv2
5
-
6
-
7
- def padRightDownCorner(img, stride, padValue):
8
- h = img.shape[0]
9
- w = img.shape[1]
10
-
11
- pad = 4 * [None]
12
- pad[0] = 0 # up
13
- pad[1] = 0 # left
14
- pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
15
- pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
16
-
17
- img_padded = img
18
- pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
19
- img_padded = np.concatenate((pad_up, img_padded), axis=0)
20
- pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
21
- img_padded = np.concatenate((pad_left, img_padded), axis=1)
22
- pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
23
- img_padded = np.concatenate((img_padded, pad_down), axis=0)
24
- pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
25
- img_padded = np.concatenate((img_padded, pad_right), axis=1)
26
-
27
- return img_padded, pad
28
-
29
- # transfer caffe model to pytorch which will match the layer name
30
- def transfer(model, model_weights):
31
- transfered_model_weights = {}
32
- for weights_name in model.state_dict().keys():
33
- transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
34
- return transfered_model_weights
35
-
36
- # draw the body keypoint and lims
37
- def draw_bodypose(canvas, candidate, subset):
38
- stickwidth = 4
39
- limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
40
- [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
41
- [1, 16], [16, 18], [3, 17], [6, 18]]
42
-
43
- colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
44
- [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
45
- [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
46
- for i in range(18):
47
- for n in range(len(subset)):
48
- index = int(subset[n][i])
49
- if index == -1:
50
- continue
51
- x, y = candidate[index][0:2]
52
- cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
53
- for i in range(17):
54
- for n in range(len(subset)):
55
- index = subset[n][np.array(limbSeq[i]) - 1]
56
- if -1 in index:
57
- continue
58
- cur_canvas = canvas.copy()
59
- Y = candidate[index.astype(int), 0]
60
- X = candidate[index.astype(int), 1]
61
- mX = np.mean(X)
62
- mY = np.mean(Y)
63
- length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
64
- angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
65
- polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
66
- cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
67
- canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
68
- # plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]])
69
- # plt.imshow(canvas[:, :, [2, 1, 0]])
70
- return canvas
71
-
72
-
73
- # image drawed by opencv is not good.
74
- def draw_handpose(canvas, all_hand_peaks, show_number=False):
75
- edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
76
- [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
77
-
78
- for peaks in all_hand_peaks:
79
- for ie, e in enumerate(edges):
80
- if np.sum(np.all(peaks[e], axis=1)==0)==0:
81
- x1, y1 = peaks[e[0]]
82
- x2, y2 = peaks[e[1]]
83
- cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)
84
-
85
- for i, keyponit in enumerate(peaks):
86
- x, y = keyponit
87
- cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
88
- if show_number:
89
- cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
90
- return canvas
91
-
92
- # detect hand according to body pose keypoints
93
- # please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
94
- def handDetect(candidate, subset, oriImg):
95
- # right hand: wrist 4, elbow 3, shoulder 2
96
- # left hand: wrist 7, elbow 6, shoulder 5
97
- ratioWristElbow = 0.33
98
- detect_result = []
99
- image_height, image_width = oriImg.shape[0:2]
100
- for person in subset.astype(int):
101
- # if any of three not detected
102
- has_left = np.sum(person[[5, 6, 7]] == -1) == 0
103
- has_right = np.sum(person[[2, 3, 4]] == -1) == 0
104
- if not (has_left or has_right):
105
- continue
106
- hands = []
107
- #left hand
108
- if has_left:
109
- left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
110
- x1, y1 = candidate[left_shoulder_index][:2]
111
- x2, y2 = candidate[left_elbow_index][:2]
112
- x3, y3 = candidate[left_wrist_index][:2]
113
- hands.append([x1, y1, x2, y2, x3, y3, True])
114
- # right hand
115
- if has_right:
116
- right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
117
- x1, y1 = candidate[right_shoulder_index][:2]
118
- x2, y2 = candidate[right_elbow_index][:2]
119
- x3, y3 = candidate[right_wrist_index][:2]
120
- hands.append([x1, y1, x2, y2, x3, y3, False])
121
-
122
- for x1, y1, x2, y2, x3, y3, is_left in hands:
123
- # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
124
- # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
125
- # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
126
- # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
127
- # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
128
- # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
129
- x = x3 + ratioWristElbow * (x3 - x2)
130
- y = y3 + ratioWristElbow * (y3 - y2)
131
- distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
132
- distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
133
- width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
134
- # x-y refers to the center --> offset to topLeft point
135
- # handRectangle.x -= handRectangle.width / 2.f;
136
- # handRectangle.y -= handRectangle.height / 2.f;
137
- x -= width / 2
138
- y -= width / 2 # width = height
139
- # overflow the image
140
- if x < 0: x = 0
141
- if y < 0: y = 0
142
- width1 = width
143
- width2 = width
144
- if x + width > image_width: width1 = image_width - x
145
- if y + width > image_height: width2 = image_height - y
146
- width = min(width1, width2)
147
- # the max hand box value is 20 pixels
148
- if width >= 20:
149
- detect_result.append([int(x), int(y), int(width), is_left])
150
-
151
- '''
152
- return value: [[x, y, w, True if left hand else False]].
153
- width=height since the network require squared input.
154
- x, y is the coordinate of top left
155
- '''
156
- return detect_result
157
-
158
- # get max index of 2d array
159
- def npmax(array):
160
- arrayindex = array.argmax(1)
161
- arrayvalue = array.max(1)
162
- i = arrayvalue.argmax()
163
- j = arrayindex[i]
164
- return i, j
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
annotator/util.py DELETED
@@ -1,34 +0,0 @@
1
- import numpy as np
2
- import cv2
3
-
4
-
5
- def HWC3(x):
6
- assert x.dtype == np.uint8
7
- if x.ndim == 2:
8
- x = x[:, :, None]
9
- assert x.ndim == 3
10
- H, W, C = x.shape
11
- assert C == 1 or C == 3 or C == 4
12
- if C == 3:
13
- return x
14
- if C == 1:
15
- return np.concatenate([x, x, x], axis=2)
16
- if C == 4:
17
- color = x[:, :, 0:3].astype(np.float32)
18
- alpha = x[:, :, 3:4].astype(np.float32) / 255.0
19
- y = color * alpha + 255.0 * (1.0 - alpha)
20
- y = y.clip(0, 255).astype(np.uint8)
21
- return y
22
-
23
-
24
- def resize_image(input_image, resolution):
25
- H, W, C = input_image.shape
26
- H = float(H)
27
- W = float(W)
28
- k = float(resolution) / min(H, W)
29
- H *= k
30
- W *= k
31
- H = int(np.round(H / 64.0)) * 64
32
- W = int(np.round(W / 64.0)) * 64
33
- img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
34
- return img