# +-----------------------------------------------+ # | | # | Give Feedback / Get Help | # | https://github.com/BerriAI/litellm/issues/new | # | | # +-----------------------------------------------+ # # Thank you users! We ❤️ you! - Krrish & Ishaan import ast import asyncio import base64 import binascii import copy import datetime import hashlib import inspect import io import itertools import json import logging import os import random # type: ignore import re import struct import subprocess # What is this? ## Generic utils.py file. Problem-specific utils (e.g. 'cost calculation), should all be in `litellm_core_utils/`. import sys import textwrap import threading import time import traceback import uuid from dataclasses import dataclass, field from functools import lru_cache, wraps from importlib import resources from inspect import iscoroutine from os.path import abspath, dirname, join import aiohttp import dotenv import httpx import openai import tiktoken from httpx import Proxy from httpx._utils import get_environment_proxies from openai.lib import _parsing, _pydantic from openai.types.chat.completion_create_params import ResponseFormat from pydantic import BaseModel from tiktoken import Encoding from tokenizers import Tokenizer import litellm import litellm._service_logger # for storing API inputs, outputs, and metadata import litellm.litellm_core_utils import litellm.litellm_core_utils.audio_utils.utils import litellm.litellm_core_utils.json_validation_rule from litellm.caching._internal_lru_cache import lru_cache_wrapper from litellm.caching.caching import DualCache from litellm.caching.caching_handler import CachingHandlerResponse, LLMCachingHandler from litellm.integrations.custom_logger import CustomLogger from litellm.litellm_core_utils.core_helpers import ( map_finish_reason, process_response_headers, ) from litellm.litellm_core_utils.default_encoding import encoding from litellm.litellm_core_utils.exception_mapping_utils import ( _get_response_headers, exception_type, get_error_message, ) from litellm.litellm_core_utils.get_litellm_params import ( _get_base_model_from_litellm_call_metadata, get_litellm_params, ) from litellm.litellm_core_utils.get_llm_provider_logic import ( _is_non_openai_azure_model, get_llm_provider, ) from litellm.litellm_core_utils.get_supported_openai_params import ( get_supported_openai_params, ) from litellm.litellm_core_utils.llm_request_utils import _ensure_extra_body_is_safe from litellm.litellm_core_utils.llm_response_utils.convert_dict_to_response import ( LiteLLMResponseObjectHandler, _handle_invalid_parallel_tool_calls, convert_to_model_response_object, convert_to_streaming_response, convert_to_streaming_response_async, ) from litellm.litellm_core_utils.llm_response_utils.get_api_base import get_api_base from litellm.litellm_core_utils.llm_response_utils.get_formatted_prompt import ( get_formatted_prompt, ) from litellm.litellm_core_utils.llm_response_utils.get_headers import ( get_response_headers, ) from litellm.litellm_core_utils.llm_response_utils.response_metadata import ( ResponseMetadata, ) from litellm.litellm_core_utils.redact_messages import ( LiteLLMLoggingObject, redact_message_input_output_from_logging, ) from litellm.litellm_core_utils.rules import Rules from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper from litellm.litellm_core_utils.token_counter import ( calculate_img_tokens, get_modified_max_tokens, ) from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler from litellm.router_utils.get_retry_from_policy import ( get_num_retries_from_retry_policy, reset_retry_policy, ) from litellm.secret_managers.main import get_secret from litellm.types.llms.anthropic import ANTHROPIC_API_ONLY_HEADERS from litellm.types.llms.openai import ( AllMessageValues, AllPromptValues, ChatCompletionAssistantToolCall, ChatCompletionNamedToolChoiceParam, ChatCompletionToolParam, ChatCompletionToolParamFunctionChunk, OpenAITextCompletionUserMessage, ) from litellm.types.rerank import RerankResponse from litellm.types.utils import FileTypes # type: ignore from litellm.types.utils import ( OPENAI_RESPONSE_HEADERS, CallTypes, ChatCompletionDeltaToolCall, ChatCompletionMessageToolCall, Choices, CostPerToken, CustomHuggingfaceTokenizer, Delta, Embedding, EmbeddingResponse, Function, ImageResponse, LlmProviders, LlmProvidersSet, Message, ModelInfo, ModelInfoBase, ModelResponse, ModelResponseStream, ProviderField, ProviderSpecificModelInfo, SelectTokenizerResponse, StreamingChoices, TextChoices, TextCompletionResponse, TranscriptionResponse, Usage, all_litellm_params, ) with resources.open_text( "litellm.litellm_core_utils.tokenizers", "anthropic_tokenizer.json" ) as f: json_data = json.load(f) # Convert to str (if necessary) claude_json_str = json.dumps(json_data) import importlib.metadata from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Optional, Tuple, Type, Union, cast, get_args, ) from openai import OpenAIError as OriginalError from litellm.litellm_core_utils.thread_pool_executor import executor from litellm.llms.base_llm.audio_transcription.transformation import ( BaseAudioTranscriptionConfig, ) from litellm.llms.base_llm.base_utils import ( BaseLLMModelInfo, type_to_response_format_param, ) from litellm.llms.base_llm.chat.transformation import BaseConfig from litellm.llms.base_llm.completion.transformation import BaseTextCompletionConfig from litellm.llms.base_llm.embedding.transformation import BaseEmbeddingConfig from litellm.llms.base_llm.image_variations.transformation import ( BaseImageVariationConfig, ) from litellm.llms.base_llm.rerank.transformation import BaseRerankConfig from ._logging import _is_debugging_on, verbose_logger from .caching.caching import ( Cache, QdrantSemanticCache, RedisCache, RedisSemanticCache, S3Cache, ) from .exceptions import ( APIConnectionError, APIError, AuthenticationError, BadRequestError, BudgetExceededError, ContentPolicyViolationError, ContextWindowExceededError, NotFoundError, OpenAIError, PermissionDeniedError, RateLimitError, ServiceUnavailableError, Timeout, UnprocessableEntityError, UnsupportedParamsError, ) from .proxy._types import AllowedModelRegion, KeyManagementSystem from .types.llms.openai import ( ChatCompletionDeltaToolCallChunk, ChatCompletionToolCallChunk, ChatCompletionToolCallFunctionChunk, ) from .types.router import LiteLLM_Params ####### ENVIRONMENT VARIABLES #################### # Adjust to your specific application needs / system capabilities. sentry_sdk_instance = None capture_exception = None add_breadcrumb = None posthog = None slack_app = None alerts_channel = None heliconeLogger = None athinaLogger = None promptLayerLogger = None langsmithLogger = None logfireLogger = None weightsBiasesLogger = None customLogger = None langFuseLogger = None openMeterLogger = None lagoLogger = None dataDogLogger = None prometheusLogger = None dynamoLogger = None s3Logger = None genericAPILogger = None greenscaleLogger = None lunaryLogger = None aispendLogger = None supabaseClient = None callback_list: Optional[List[str]] = [] user_logger_fn = None additional_details: Optional[Dict[str, str]] = {} local_cache: Optional[Dict[str, str]] = {} last_fetched_at = None last_fetched_at_keys = None ######## Model Response ######################### # All liteLLM Model responses will be in this format, Follows the OpenAI Format # https://docs.litellm.ai/docs/completion/output # { # 'choices': [ # { # 'finish_reason': 'stop', # 'index': 0, # 'message': { # 'role': 'assistant', # 'content': " I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic." # } # } # ], # 'created': 1691429984.3852863, # 'model': 'claude-instant-1', # 'usage': {'prompt_tokens': 18, 'completion_tokens': 23, 'total_tokens': 41} # } ############################################################ def print_verbose( print_statement, logger_only: bool = False, log_level: Literal["DEBUG", "INFO", "ERROR"] = "DEBUG", ): try: if log_level == "DEBUG": verbose_logger.debug(print_statement) elif log_level == "INFO": verbose_logger.info(print_statement) elif log_level == "ERROR": verbose_logger.error(print_statement) if litellm.set_verbose is True and logger_only is False: print(print_statement) # noqa except Exception: pass ####### CLIENT ################### # make it easy to log if completion/embedding runs succeeded or failed + see what happened | Non-Blocking def custom_llm_setup(): """ Add custom_llm provider to provider list """ for custom_llm in litellm.custom_provider_map: if custom_llm["provider"] not in litellm.provider_list: litellm.provider_list.append(custom_llm["provider"]) if custom_llm["provider"] not in litellm._custom_providers: litellm._custom_providers.append(custom_llm["provider"]) def _add_custom_logger_callback_to_specific_event( callback: str, logging_event: Literal["success", "failure"] ) -> None: """ Add a custom logger callback to the specific event """ from litellm import _custom_logger_compatible_callbacks_literal from litellm.litellm_core_utils.litellm_logging import ( _init_custom_logger_compatible_class, ) if callback not in litellm._known_custom_logger_compatible_callbacks: verbose_logger.debug( f"Callback {callback} is not a valid custom logger compatible callback. Known list - {litellm._known_custom_logger_compatible_callbacks}" ) return callback_class = _init_custom_logger_compatible_class( cast(_custom_logger_compatible_callbacks_literal, callback), internal_usage_cache=None, llm_router=None, ) if callback_class: if ( logging_event == "success" and _custom_logger_class_exists_in_success_callbacks(callback_class) is False ): litellm.logging_callback_manager.add_litellm_success_callback( callback_class ) litellm.logging_callback_manager.add_litellm_async_success_callback( callback_class ) if callback in litellm.success_callback: litellm.success_callback.remove( callback ) # remove the string from the callback list if callback in litellm._async_success_callback: litellm._async_success_callback.remove( callback ) # remove the string from the callback list elif ( logging_event == "failure" and _custom_logger_class_exists_in_failure_callbacks(callback_class) is False ): litellm.logging_callback_manager.add_litellm_failure_callback( callback_class ) litellm.logging_callback_manager.add_litellm_async_failure_callback( callback_class ) if callback in litellm.failure_callback: litellm.failure_callback.remove( callback ) # remove the string from the callback list if callback in litellm._async_failure_callback: litellm._async_failure_callback.remove( callback ) # remove the string from the callback list def _custom_logger_class_exists_in_success_callbacks( callback_class: CustomLogger, ) -> bool: """ Returns True if an instance of the custom logger exists in litellm.success_callback or litellm._async_success_callback e.g if `LangfusePromptManagement` is passed in, it will return True if an instance of `LangfusePromptManagement` exists in litellm.success_callback or litellm._async_success_callback Prevents double adding a custom logger callback to the litellm callbacks """ return any( isinstance(cb, type(callback_class)) for cb in litellm.success_callback + litellm._async_success_callback ) def _custom_logger_class_exists_in_failure_callbacks( callback_class: CustomLogger, ) -> bool: """ Returns True if an instance of the custom logger exists in litellm.failure_callback or litellm._async_failure_callback e.g if `LangfusePromptManagement` is passed in, it will return True if an instance of `LangfusePromptManagement` exists in litellm.failure_callback or litellm._async_failure_callback Prevents double adding a custom logger callback to the litellm callbacks """ return any( isinstance(cb, type(callback_class)) for cb in litellm.failure_callback + litellm._async_failure_callback ) def function_setup( # noqa: PLR0915 original_function: str, rules_obj, start_time, *args, **kwargs ): # just run once to check if user wants to send their data anywhere - PostHog/Sentry/Slack/etc. ### NOTICES ### from litellm import Logging as LiteLLMLogging from litellm.litellm_core_utils.litellm_logging import set_callbacks if litellm.set_verbose is True: verbose_logger.warning( "`litellm.set_verbose` is deprecated. Please set `os.environ['LITELLM_LOG'] = 'DEBUG'` for debug logs." ) try: global callback_list, add_breadcrumb, user_logger_fn, Logging ## CUSTOM LLM SETUP ## custom_llm_setup() ## LOGGING SETUP function_id: Optional[str] = kwargs["id"] if "id" in kwargs else None if len(litellm.callbacks) > 0: for callback in litellm.callbacks: # check if callback is a string - e.g. "lago", "openmeter" if isinstance(callback, str): callback = litellm.litellm_core_utils.litellm_logging._init_custom_logger_compatible_class( # type: ignore callback, internal_usage_cache=None, llm_router=None ) if callback is None or any( isinstance(cb, type(callback)) for cb in litellm._async_success_callback ): # don't double add a callback continue if callback not in litellm.input_callback: litellm.input_callback.append(callback) # type: ignore if callback not in litellm.success_callback: litellm.logging_callback_manager.add_litellm_success_callback(callback) # type: ignore if callback not in litellm.failure_callback: litellm.logging_callback_manager.add_litellm_failure_callback(callback) # type: ignore if callback not in litellm._async_success_callback: litellm.logging_callback_manager.add_litellm_async_success_callback(callback) # type: ignore if callback not in litellm._async_failure_callback: litellm.logging_callback_manager.add_litellm_async_failure_callback(callback) # type: ignore print_verbose( f"Initialized litellm callbacks, Async Success Callbacks: {litellm._async_success_callback}" ) if ( len(litellm.input_callback) > 0 or len(litellm.success_callback) > 0 or len(litellm.failure_callback) > 0 ) and len( callback_list # type: ignore ) == 0: # type: ignore callback_list = list( set( litellm.input_callback # type: ignore + litellm.success_callback + litellm.failure_callback ) ) set_callbacks(callback_list=callback_list, function_id=function_id) ## ASYNC CALLBACKS if len(litellm.input_callback) > 0: removed_async_items = [] for index, callback in enumerate(litellm.input_callback): # type: ignore if inspect.iscoroutinefunction(callback): litellm._async_input_callback.append(callback) removed_async_items.append(index) # Pop the async items from input_callback in reverse order to avoid index issues for index in reversed(removed_async_items): litellm.input_callback.pop(index) if len(litellm.success_callback) > 0: removed_async_items = [] for index, callback in enumerate(litellm.success_callback): # type: ignore if inspect.iscoroutinefunction(callback): litellm.logging_callback_manager.add_litellm_async_success_callback( callback ) removed_async_items.append(index) elif callback == "dynamodb" or callback == "openmeter": # dynamo is an async callback, it's used for the proxy and needs to be async # we only support async dynamo db logging for acompletion/aembedding since that's used on proxy litellm.logging_callback_manager.add_litellm_async_success_callback( callback ) removed_async_items.append(index) elif ( callback in litellm._known_custom_logger_compatible_callbacks and isinstance(callback, str) ): _add_custom_logger_callback_to_specific_event(callback, "success") # Pop the async items from success_callback in reverse order to avoid index issues for index in reversed(removed_async_items): litellm.success_callback.pop(index) if len(litellm.failure_callback) > 0: removed_async_items = [] for index, callback in enumerate(litellm.failure_callback): # type: ignore if inspect.iscoroutinefunction(callback): litellm.logging_callback_manager.add_litellm_async_failure_callback( callback ) removed_async_items.append(index) elif ( callback in litellm._known_custom_logger_compatible_callbacks and isinstance(callback, str) ): _add_custom_logger_callback_to_specific_event(callback, "failure") # Pop the async items from failure_callback in reverse order to avoid index issues for index in reversed(removed_async_items): litellm.failure_callback.pop(index) ### DYNAMIC CALLBACKS ### dynamic_success_callbacks: Optional[ List[Union[str, Callable, CustomLogger]] ] = None dynamic_async_success_callbacks: Optional[ List[Union[str, Callable, CustomLogger]] ] = None dynamic_failure_callbacks: Optional[ List[Union[str, Callable, CustomLogger]] ] = None dynamic_async_failure_callbacks: Optional[ List[Union[str, Callable, CustomLogger]] ] = None if kwargs.get("success_callback", None) is not None and isinstance( kwargs["success_callback"], list ): removed_async_items = [] for index, callback in enumerate(kwargs["success_callback"]): if ( inspect.iscoroutinefunction(callback) or callback == "dynamodb" or callback == "s3" ): if dynamic_async_success_callbacks is not None and isinstance( dynamic_async_success_callbacks, list ): dynamic_async_success_callbacks.append(callback) else: dynamic_async_success_callbacks = [callback] removed_async_items.append(index) # Pop the async items from success_callback in reverse order to avoid index issues for index in reversed(removed_async_items): kwargs["success_callback"].pop(index) dynamic_success_callbacks = kwargs.pop("success_callback") if kwargs.get("failure_callback", None) is not None and isinstance( kwargs["failure_callback"], list ): dynamic_failure_callbacks = kwargs.pop("failure_callback") if add_breadcrumb: try: details_to_log = copy.deepcopy(kwargs) except Exception: details_to_log = kwargs if litellm.turn_off_message_logging: # make a copy of the _model_Call_details and log it details_to_log.pop("messages", None) details_to_log.pop("input", None) details_to_log.pop("prompt", None) add_breadcrumb( category="litellm.llm_call", message=f"Positional Args: {args}, Keyword Args: {details_to_log}", level="info", ) if "logger_fn" in kwargs: user_logger_fn = kwargs["logger_fn"] # INIT LOGGER - for user-specified integrations model = args[0] if len(args) > 0 else kwargs.get("model", None) call_type = original_function if ( call_type == CallTypes.completion.value or call_type == CallTypes.acompletion.value ): messages = None if len(args) > 1: messages = args[1] elif kwargs.get("messages", None): messages = kwargs["messages"] ### PRE-CALL RULES ### if ( isinstance(messages, list) and len(messages) > 0 and isinstance(messages[0], dict) and "content" in messages[0] ): rules_obj.pre_call_rules( input="".join( m.get("content", "") for m in messages if "content" in m and isinstance(m["content"], str) ), model=model, ) elif ( call_type == CallTypes.embedding.value or call_type == CallTypes.aembedding.value ): messages = args[1] if len(args) > 1 else kwargs.get("input", None) elif ( call_type == CallTypes.image_generation.value or call_type == CallTypes.aimage_generation.value ): messages = args[0] if len(args) > 0 else kwargs["prompt"] elif ( call_type == CallTypes.moderation.value or call_type == CallTypes.amoderation.value ): messages = args[1] if len(args) > 1 else kwargs["input"] elif ( call_type == CallTypes.atext_completion.value or call_type == CallTypes.text_completion.value ): messages = args[0] if len(args) > 0 else kwargs["prompt"] elif ( call_type == CallTypes.rerank.value or call_type == CallTypes.arerank.value ): messages = kwargs.get("query") elif ( call_type == CallTypes.atranscription.value or call_type == CallTypes.transcription.value ): _file_obj: FileTypes = args[1] if len(args) > 1 else kwargs["file"] file_checksum = ( litellm.litellm_core_utils.audio_utils.utils.get_audio_file_name( file_obj=_file_obj ) ) if "metadata" in kwargs: kwargs["metadata"]["file_checksum"] = file_checksum else: kwargs["metadata"] = {"file_checksum": file_checksum} messages = file_checksum elif ( call_type == CallTypes.aspeech.value or call_type == CallTypes.speech.value ): messages = kwargs.get("input", "speech") else: messages = "default-message-value" stream = True if "stream" in kwargs and kwargs["stream"] is True else False logging_obj = LiteLLMLogging( model=model, messages=messages, stream=stream, litellm_call_id=kwargs["litellm_call_id"], litellm_trace_id=kwargs.get("litellm_trace_id"), function_id=function_id or "", call_type=call_type, start_time=start_time, dynamic_success_callbacks=dynamic_success_callbacks, dynamic_failure_callbacks=dynamic_failure_callbacks, dynamic_async_success_callbacks=dynamic_async_success_callbacks, dynamic_async_failure_callbacks=dynamic_async_failure_callbacks, kwargs=kwargs, ) ## check if metadata is passed in litellm_params: Dict[str, Any] = {"api_base": ""} if "metadata" in kwargs: litellm_params["metadata"] = kwargs["metadata"] logging_obj.update_environment_variables( model=model, user="", optional_params={}, litellm_params=litellm_params, stream_options=kwargs.get("stream_options", None), ) return logging_obj, kwargs except Exception as e: verbose_logger.error( f"litellm.utils.py::function_setup() - [Non-Blocking] {traceback.format_exc()}; args - {args}; kwargs - {kwargs}" ) raise e async def _client_async_logging_helper( logging_obj: LiteLLMLoggingObject, result, start_time, end_time, is_completion_with_fallbacks: bool, ): if ( is_completion_with_fallbacks is False ): # don't log the parent event litellm.completion_with_fallbacks as a 'log_success_event', this will lead to double logging the same call - https://github.com/BerriAI/litellm/issues/7477 print_verbose( f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}" ) # check if user does not want this to be logged asyncio.create_task( logging_obj.async_success_handler(result, start_time, end_time) ) logging_obj.handle_sync_success_callbacks_for_async_calls( result=result, start_time=start_time, end_time=end_time, ) def _get_wrapper_num_retries( kwargs: Dict[str, Any], exception: Exception ) -> Tuple[Optional[int], Dict[str, Any]]: """ Get the number of retries from the kwargs and the retry policy. Used for the wrapper functions. """ num_retries = kwargs.get("num_retries", None) if num_retries is None: num_retries = litellm.num_retries if kwargs.get("retry_policy", None): retry_policy_num_retries = get_num_retries_from_retry_policy( exception=exception, retry_policy=kwargs.get("retry_policy"), ) kwargs["retry_policy"] = reset_retry_policy() if retry_policy_num_retries is not None: num_retries = retry_policy_num_retries return num_retries, kwargs def _get_wrapper_timeout( kwargs: Dict[str, Any], exception: Exception ) -> Optional[Union[float, int, httpx.Timeout]]: """ Get the timeout from the kwargs Used for the wrapper functions. """ timeout = cast( Optional[Union[float, int, httpx.Timeout]], kwargs.get("timeout", None) ) return timeout def client(original_function): # noqa: PLR0915 rules_obj = Rules() def check_coroutine(value) -> bool: if inspect.iscoroutine(value): return True elif inspect.iscoroutinefunction(value): return True else: return False def post_call_processing(original_response, model, optional_params: Optional[dict]): try: if original_response is None: pass else: call_type = original_function.__name__ if ( call_type == CallTypes.completion.value or call_type == CallTypes.acompletion.value ): is_coroutine = check_coroutine(original_response) if is_coroutine is True: pass else: if ( isinstance(original_response, ModelResponse) and len(original_response.choices) > 0 ): model_response: Optional[str] = original_response.choices[ 0 ].message.content # type: ignore if model_response is not None: ### POST-CALL RULES ### rules_obj.post_call_rules( input=model_response, model=model ) ### JSON SCHEMA VALIDATION ### if litellm.enable_json_schema_validation is True: try: if ( optional_params is not None and "response_format" in optional_params and optional_params["response_format"] is not None ): json_response_format: Optional[dict] = None if ( isinstance( optional_params["response_format"], dict, ) and optional_params[ "response_format" ].get("json_schema") is not None ): json_response_format = optional_params[ "response_format" ] elif _parsing._completions.is_basemodel_type( optional_params["response_format"] # type: ignore ): json_response_format = ( type_to_response_format_param( response_format=optional_params[ "response_format" ] ) ) if json_response_format is not None: litellm.litellm_core_utils.json_validation_rule.validate_schema( schema=json_response_format[ "json_schema" ]["schema"], response=model_response, ) except TypeError: pass if ( optional_params is not None and "response_format" in optional_params and isinstance( optional_params["response_format"], dict ) and "type" in optional_params["response_format"] and optional_params["response_format"]["type"] == "json_object" and "response_schema" in optional_params["response_format"] and isinstance( optional_params["response_format"][ "response_schema" ], dict, ) and "enforce_validation" in optional_params["response_format"] and optional_params["response_format"][ "enforce_validation" ] is True ): # schema given, json response expected, and validation enforced litellm.litellm_core_utils.json_validation_rule.validate_schema( schema=optional_params["response_format"][ "response_schema" ], response=model_response, ) except Exception as e: raise e @wraps(original_function) def wrapper(*args, **kwargs): # noqa: PLR0915 # DO NOT MOVE THIS. It always needs to run first # Check if this is an async function. If so only execute the async function call_type = original_function.__name__ if _is_async_request(kwargs): # [OPTIONAL] CHECK MAX RETRIES / REQUEST if litellm.num_retries_per_request is not None: # check if previous_models passed in as ['litellm_params']['metadata]['previous_models'] previous_models = kwargs.get("metadata", {}).get( "previous_models", None ) if previous_models is not None: if litellm.num_retries_per_request <= len(previous_models): raise Exception("Max retries per request hit!") # MODEL CALL result = original_function(*args, **kwargs) if "stream" in kwargs and kwargs["stream"] is True: if ( "complete_response" in kwargs and kwargs["complete_response"] is True ): chunks = [] for idx, chunk in enumerate(result): chunks.append(chunk) return litellm.stream_chunk_builder( chunks, messages=kwargs.get("messages", None) ) else: return result return result # Prints Exactly what was passed to litellm function - don't execute any logic here - it should just print print_args_passed_to_litellm(original_function, args, kwargs) start_time = datetime.datetime.now() result = None logging_obj: Optional[LiteLLMLoggingObject] = kwargs.get( "litellm_logging_obj", None ) # only set litellm_call_id if its not in kwargs if "litellm_call_id" not in kwargs: kwargs["litellm_call_id"] = str(uuid.uuid4()) model: Optional[str] = args[0] if len(args) > 0 else kwargs.get("model", None) try: if logging_obj is None: logging_obj, kwargs = function_setup( original_function.__name__, rules_obj, start_time, *args, **kwargs ) kwargs["litellm_logging_obj"] = logging_obj _llm_caching_handler: LLMCachingHandler = LLMCachingHandler( original_function=original_function, request_kwargs=kwargs, start_time=start_time, ) logging_obj._llm_caching_handler = _llm_caching_handler # CHECK FOR 'os.environ/' in kwargs for k, v in kwargs.items(): if v is not None and isinstance(v, str) and v.startswith("os.environ/"): kwargs[k] = litellm.get_secret(v) # [OPTIONAL] CHECK BUDGET if litellm.max_budget: if litellm._current_cost > litellm.max_budget: raise BudgetExceededError( current_cost=litellm._current_cost, max_budget=litellm.max_budget, ) # [OPTIONAL] CHECK MAX RETRIES / REQUEST if litellm.num_retries_per_request is not None: # check if previous_models passed in as ['litellm_params']['metadata]['previous_models'] previous_models = kwargs.get("metadata", {}).get( "previous_models", None ) if previous_models is not None: if litellm.num_retries_per_request <= len(previous_models): raise Exception("Max retries per request hit!") # [OPTIONAL] CHECK CACHE print_verbose( f"SYNC kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}; kwargs.get('cache')['no-cache']: {kwargs.get('cache', {}).get('no-cache', False)}" ) # if caching is false or cache["no-cache"]==True, don't run this if ( ( ( ( kwargs.get("caching", None) is None and litellm.cache is not None ) or kwargs.get("caching", False) is True ) and kwargs.get("cache", {}).get("no-cache", False) is not True ) and kwargs.get("aembedding", False) is not True and kwargs.get("atext_completion", False) is not True and kwargs.get("acompletion", False) is not True and kwargs.get("aimg_generation", False) is not True and kwargs.get("atranscription", False) is not True and kwargs.get("arerank", False) is not True and kwargs.get("_arealtime", False) is not True ): # allow users to control returning cached responses from the completion function # checking cache verbose_logger.debug("INSIDE CHECKING SYNC CACHE") caching_handler_response: CachingHandlerResponse = ( _llm_caching_handler._sync_get_cache( model=model or "", original_function=original_function, logging_obj=logging_obj, start_time=start_time, call_type=call_type, kwargs=kwargs, args=args, ) ) if caching_handler_response.cached_result is not None: return caching_handler_response.cached_result # CHECK MAX TOKENS if ( kwargs.get("max_tokens", None) is not None and model is not None and litellm.modify_params is True # user is okay with params being modified and ( call_type == CallTypes.acompletion.value or call_type == CallTypes.completion.value ) ): try: base_model = model if kwargs.get("hf_model_name", None) is not None: base_model = f"huggingface/{kwargs.get('hf_model_name')}" messages = None if len(args) > 1: messages = args[1] elif kwargs.get("messages", None): messages = kwargs["messages"] user_max_tokens = kwargs.get("max_tokens") modified_max_tokens = get_modified_max_tokens( model=model, base_model=base_model, messages=messages, user_max_tokens=user_max_tokens, buffer_num=None, buffer_perc=None, ) kwargs["max_tokens"] = modified_max_tokens except Exception as e: print_verbose(f"Error while checking max token limit: {str(e)}") # MODEL CALL result = original_function(*args, **kwargs) end_time = datetime.datetime.now() if "stream" in kwargs and kwargs["stream"] is True: if ( "complete_response" in kwargs and kwargs["complete_response"] is True ): chunks = [] for idx, chunk in enumerate(result): chunks.append(chunk) return litellm.stream_chunk_builder( chunks, messages=kwargs.get("messages", None) ) else: # RETURN RESULT update_response_metadata( result=result, logging_obj=logging_obj, model=model, kwargs=kwargs, start_time=start_time, end_time=end_time, ) return result elif "acompletion" in kwargs and kwargs["acompletion"] is True: return result elif "aembedding" in kwargs and kwargs["aembedding"] is True: return result elif "aimg_generation" in kwargs and kwargs["aimg_generation"] is True: return result elif "atranscription" in kwargs and kwargs["atranscription"] is True: return result elif "aspeech" in kwargs and kwargs["aspeech"] is True: return result elif asyncio.iscoroutine(result): # bubble up to relevant async function return result ### POST-CALL RULES ### post_call_processing( original_response=result, model=model or None, optional_params=kwargs, ) # [OPTIONAL] ADD TO CACHE _llm_caching_handler.sync_set_cache( result=result, args=args, kwargs=kwargs, ) # LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated verbose_logger.info("Wrapper: Completed Call, calling success_handler") executor.submit( logging_obj.success_handler, result, start_time, end_time, ) # RETURN RESULT update_response_metadata( result=result, logging_obj=logging_obj, model=model, kwargs=kwargs, start_time=start_time, end_time=end_time, ) return result except Exception as e: call_type = original_function.__name__ if call_type == CallTypes.completion.value: num_retries = ( kwargs.get("num_retries", None) or litellm.num_retries or None ) if kwargs.get("retry_policy", None): num_retries = get_num_retries_from_retry_policy( exception=e, retry_policy=kwargs.get("retry_policy"), ) kwargs["retry_policy"] = ( reset_retry_policy() ) # prevent infinite loops litellm.num_retries = ( None # set retries to None to prevent infinite loops ) context_window_fallback_dict = kwargs.get( "context_window_fallback_dict", {} ) _is_litellm_router_call = "model_group" in kwargs.get( "metadata", {} ) # check if call from litellm.router/proxy if ( num_retries and not _is_litellm_router_call ): # only enter this if call is not from litellm router/proxy. router has it's own logic for retrying if ( isinstance(e, openai.APIError) or isinstance(e, openai.Timeout) or isinstance(e, openai.APIConnectionError) ): kwargs["num_retries"] = num_retries return litellm.completion_with_retries(*args, **kwargs) elif ( isinstance(e, litellm.exceptions.ContextWindowExceededError) and context_window_fallback_dict and model in context_window_fallback_dict and not _is_litellm_router_call ): if len(args) > 0: args[0] = context_window_fallback_dict[model] # type: ignore else: kwargs["model"] = context_window_fallback_dict[model] return original_function(*args, **kwargs) traceback_exception = traceback.format_exc() end_time = datetime.datetime.now() # LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated if logging_obj: logging_obj.failure_handler( e, traceback_exception, start_time, end_time ) # DO NOT MAKE THREADED - router retry fallback relies on this! raise e @wraps(original_function) async def wrapper_async(*args, **kwargs): # noqa: PLR0915 print_args_passed_to_litellm(original_function, args, kwargs) start_time = datetime.datetime.now() result = None logging_obj: Optional[LiteLLMLoggingObject] = kwargs.get( "litellm_logging_obj", None ) _llm_caching_handler: LLMCachingHandler = LLMCachingHandler( original_function=original_function, request_kwargs=kwargs, start_time=start_time, ) # only set litellm_call_id if its not in kwargs call_type = original_function.__name__ if "litellm_call_id" not in kwargs: kwargs["litellm_call_id"] = str(uuid.uuid4()) model: Optional[str] = args[0] if len(args) > 0 else kwargs.get("model", None) is_completion_with_fallbacks = kwargs.get("fallbacks") is not None try: if logging_obj is None: logging_obj, kwargs = function_setup( original_function.__name__, rules_obj, start_time, *args, **kwargs ) kwargs["litellm_logging_obj"] = logging_obj logging_obj._llm_caching_handler = _llm_caching_handler # [OPTIONAL] CHECK BUDGET if litellm.max_budget: if litellm._current_cost > litellm.max_budget: raise BudgetExceededError( current_cost=litellm._current_cost, max_budget=litellm.max_budget, ) # [OPTIONAL] CHECK CACHE print_verbose( f"ASYNC kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}; kwargs.get('cache'): {kwargs.get('cache', None)}" ) _caching_handler_response: CachingHandlerResponse = ( await _llm_caching_handler._async_get_cache( model=model or "", original_function=original_function, logging_obj=logging_obj, start_time=start_time, call_type=call_type, kwargs=kwargs, args=args, ) ) if ( _caching_handler_response.cached_result is not None and _caching_handler_response.final_embedding_cached_response is None ): return _caching_handler_response.cached_result elif _caching_handler_response.embedding_all_elements_cache_hit is True: return _caching_handler_response.final_embedding_cached_response # MODEL CALL result = await original_function(*args, **kwargs) end_time = datetime.datetime.now() if "stream" in kwargs and kwargs["stream"] is True: if ( "complete_response" in kwargs and kwargs["complete_response"] is True ): chunks = [] for idx, chunk in enumerate(result): chunks.append(chunk) return litellm.stream_chunk_builder( chunks, messages=kwargs.get("messages", None) ) else: update_response_metadata( result=result, logging_obj=logging_obj, model=model, kwargs=kwargs, start_time=start_time, end_time=end_time, ) return result elif call_type == CallTypes.arealtime.value: return result ### POST-CALL RULES ### post_call_processing( original_response=result, model=model, optional_params=kwargs ) ## Add response to cache await _llm_caching_handler.async_set_cache( result=result, original_function=original_function, kwargs=kwargs, args=args, ) # LOG SUCCESS - handle streaming success logging in the _next_ object asyncio.create_task( _client_async_logging_helper( logging_obj=logging_obj, result=result, start_time=start_time, end_time=end_time, is_completion_with_fallbacks=is_completion_with_fallbacks, ) ) logging_obj.handle_sync_success_callbacks_for_async_calls( result=result, start_time=start_time, end_time=end_time, ) # REBUILD EMBEDDING CACHING if ( isinstance(result, EmbeddingResponse) and _caching_handler_response.final_embedding_cached_response is not None ): return _llm_caching_handler._combine_cached_embedding_response_with_api_result( _caching_handler_response=_caching_handler_response, embedding_response=result, start_time=start_time, end_time=end_time, ) update_response_metadata( result=result, logging_obj=logging_obj, model=model, kwargs=kwargs, start_time=start_time, end_time=end_time, ) return result except Exception as e: traceback_exception = traceback.format_exc() end_time = datetime.datetime.now() if logging_obj: try: logging_obj.failure_handler( e, traceback_exception, start_time, end_time ) # DO NOT MAKE THREADED - router retry fallback relies on this! except Exception as e: raise e try: await logging_obj.async_failure_handler( e, traceback_exception, start_time, end_time ) except Exception as e: raise e call_type = original_function.__name__ num_retries, kwargs = _get_wrapper_num_retries(kwargs=kwargs, exception=e) if call_type == CallTypes.acompletion.value: context_window_fallback_dict = kwargs.get( "context_window_fallback_dict", {} ) _is_litellm_router_call = "model_group" in kwargs.get( "metadata", {} ) # check if call from litellm.router/proxy if ( num_retries and not _is_litellm_router_call ): # only enter this if call is not from litellm router/proxy. router has it's own logic for retrying try: litellm.num_retries = ( None # set retries to None to prevent infinite loops ) kwargs["num_retries"] = num_retries kwargs["original_function"] = original_function if isinstance( e, openai.RateLimitError ): # rate limiting specific error kwargs["retry_strategy"] = "exponential_backoff_retry" elif isinstance(e, openai.APIError): # generic api error kwargs["retry_strategy"] = "constant_retry" return await litellm.acompletion_with_retries(*args, **kwargs) except Exception: pass elif ( isinstance(e, litellm.exceptions.ContextWindowExceededError) and context_window_fallback_dict and model in context_window_fallback_dict ): if len(args) > 0: args[0] = context_window_fallback_dict[model] # type: ignore else: kwargs["model"] = context_window_fallback_dict[model] return await original_function(*args, **kwargs) setattr( e, "num_retries", num_retries ) ## IMPORTANT: returns the deployment's num_retries to the router timeout = _get_wrapper_timeout(kwargs=kwargs, exception=e) setattr(e, "timeout", timeout) raise e is_coroutine = inspect.iscoroutinefunction(original_function) # Return the appropriate wrapper based on the original function type if is_coroutine: return wrapper_async else: return wrapper def _is_async_request( kwargs: Optional[dict], is_pass_through: bool = False, ) -> bool: """ Returns True if the call type is an internal async request. eg. litellm.acompletion, litellm.aimage_generation, litellm.acreate_batch, litellm._arealtime Args: kwargs (dict): The kwargs passed to the litellm function is_pass_through (bool): Whether the call is a pass-through call. By default all pass through calls are async. """ if kwargs is None: return False if ( kwargs.get("acompletion", False) is True or kwargs.get("aembedding", False) is True or kwargs.get("aimg_generation", False) is True or kwargs.get("amoderation", False) is True or kwargs.get("atext_completion", False) is True or kwargs.get("atranscription", False) is True or kwargs.get("arerank", False) is True or kwargs.get("_arealtime", False) is True or kwargs.get("acreate_batch", False) is True or kwargs.get("acreate_fine_tuning_job", False) is True or is_pass_through is True ): return True return False def update_response_metadata( result: Any, logging_obj: LiteLLMLoggingObject, model: Optional[str], kwargs: dict, start_time: datetime.datetime, end_time: datetime.datetime, ) -> None: """ Updates response metadata, adds the following: - response._hidden_params - response._hidden_params["litellm_overhead_time_ms"] - response.response_time_ms """ if result is None: return metadata = ResponseMetadata(result) metadata.set_hidden_params(logging_obj=logging_obj, model=model, kwargs=kwargs) metadata.set_timing_metrics( start_time=start_time, end_time=end_time, logging_obj=logging_obj ) metadata.apply() def _select_tokenizer( model: str, custom_tokenizer: Optional[CustomHuggingfaceTokenizer] = None ): if custom_tokenizer is not None: _tokenizer = create_pretrained_tokenizer( identifier=custom_tokenizer["identifier"], revision=custom_tokenizer["revision"], auth_token=custom_tokenizer["auth_token"], ) return _tokenizer return _select_tokenizer_helper(model=model) @lru_cache(maxsize=128) def _select_tokenizer_helper(model: str) -> SelectTokenizerResponse: if litellm.disable_hf_tokenizer_download is True: return _return_openai_tokenizer(model) try: result = _return_huggingface_tokenizer(model) if result is not None: return result except Exception as e: verbose_logger.debug(f"Error selecting tokenizer: {e}") # default - tiktoken return _return_openai_tokenizer(model) def _return_openai_tokenizer(model: str) -> SelectTokenizerResponse: return {"type": "openai_tokenizer", "tokenizer": encoding} def _return_huggingface_tokenizer(model: str) -> Optional[SelectTokenizerResponse]: if model in litellm.cohere_models and "command-r" in model: # cohere cohere_tokenizer = Tokenizer.from_pretrained( "Xenova/c4ai-command-r-v01-tokenizer" ) return {"type": "huggingface_tokenizer", "tokenizer": cohere_tokenizer} # anthropic elif model in litellm.anthropic_models and "claude-3" not in model: claude_tokenizer = Tokenizer.from_str(claude_json_str) return {"type": "huggingface_tokenizer", "tokenizer": claude_tokenizer} # llama2 elif "llama-2" in model.lower() or "replicate" in model.lower(): tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") return {"type": "huggingface_tokenizer", "tokenizer": tokenizer} # llama3 elif "llama-3" in model.lower(): tokenizer = Tokenizer.from_pretrained("Xenova/llama-3-tokenizer") return {"type": "huggingface_tokenizer", "tokenizer": tokenizer} else: return None def encode(model="", text="", custom_tokenizer: Optional[dict] = None): """ Encodes the given text using the specified model. Args: model (str): The name of the model to use for tokenization. custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None. text (str): The text to be encoded. Returns: enc: The encoded text. """ tokenizer_json = custom_tokenizer or _select_tokenizer(model=model) if isinstance(tokenizer_json["tokenizer"], Encoding): enc = tokenizer_json["tokenizer"].encode(text, disallowed_special=()) else: enc = tokenizer_json["tokenizer"].encode(text) return enc def decode(model="", tokens: List[int] = [], custom_tokenizer: Optional[dict] = None): tokenizer_json = custom_tokenizer or _select_tokenizer(model=model) dec = tokenizer_json["tokenizer"].decode(tokens) return dec def openai_token_counter( # noqa: PLR0915 messages: Optional[list] = None, model="gpt-3.5-turbo-0613", text: Optional[str] = None, is_tool_call: Optional[bool] = False, tools: Optional[List[ChatCompletionToolParam]] = None, tool_choice: Optional[ChatCompletionNamedToolChoiceParam] = None, count_response_tokens: Optional[ bool ] = False, # Flag passed from litellm.stream_chunk_builder, to indicate counting tokens for LLM Response. We need this because for LLM input we add +3 tokens per message - based on OpenAI's token counter use_default_image_token_count: Optional[bool] = False, ): """ Return the number of tokens used by a list of messages. Borrowed from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb. """ print_verbose(f"LiteLLM: Utils - Counting tokens for OpenAI model={model}") try: if "gpt-4o" in model: encoding = tiktoken.get_encoding("o200k_base") else: encoding = tiktoken.encoding_for_model(model) except KeyError: print_verbose("Warning: model not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") if model == "gpt-3.5-turbo-0301": tokens_per_message = ( 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n ) tokens_per_name = -1 # if there's a name, the role is omitted elif model in litellm.open_ai_chat_completion_models: tokens_per_message = 3 tokens_per_name = 1 elif model in litellm.azure_llms: tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError( f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""" ) num_tokens = 0 includes_system_message = False if is_tool_call and text is not None: # if it's a tool call we assembled 'text' in token_counter() num_tokens = len(encoding.encode(text, disallowed_special=())) elif messages is not None: for message in messages: num_tokens += tokens_per_message if message.get("role", None) == "system": includes_system_message = True for key, value in message.items(): if isinstance(value, str): num_tokens += len(encoding.encode(value, disallowed_special=())) if key == "name": num_tokens += tokens_per_name elif isinstance(value, List): for c in value: if c["type"] == "text": text += c["text"] num_tokens += len( encoding.encode(c["text"], disallowed_special=()) ) elif c["type"] == "image_url": if isinstance(c["image_url"], dict): image_url_dict = c["image_url"] detail = image_url_dict.get("detail", "auto") url = image_url_dict.get("url") num_tokens += calculate_img_tokens( data=url, mode=detail, use_default_image_token_count=use_default_image_token_count or False, ) elif isinstance(c["image_url"], str): image_url_str = c["image_url"] num_tokens += calculate_img_tokens( data=image_url_str, mode="auto", use_default_image_token_count=use_default_image_token_count or False, ) elif text is not None and count_response_tokens is True: # This is the case where we need to count tokens for a streamed response. We should NOT add +3 tokens per message in this branch num_tokens = len(encoding.encode(text, disallowed_special=())) return num_tokens elif text is not None: num_tokens = len(encoding.encode(text, disallowed_special=())) num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> if tools: num_tokens += len(encoding.encode(_format_function_definitions(tools))) num_tokens += 9 # Additional tokens for function definition of tools # If there's a system message and tools are present, subtract four tokens if tools and includes_system_message: num_tokens -= 4 # If tool_choice is 'none', add one token. # If it's an object, add 4 + the number of tokens in the function name. # If it's undefined or 'auto', don't add anything. if tool_choice == "none": num_tokens += 1 elif isinstance(tool_choice, dict): num_tokens += 7 num_tokens += len(encoding.encode(tool_choice["function"]["name"])) return num_tokens def create_pretrained_tokenizer( identifier: str, revision="main", auth_token: Optional[str] = None ): """ Creates a tokenizer from an existing file on a HuggingFace repository to be used with `token_counter`. Args: identifier (str): The identifier of a Model on the Hugging Face Hub, that contains a tokenizer.json file revision (str, defaults to main): A branch or commit id auth_token (str, optional, defaults to None): An optional auth token used to access private repositories on the Hugging Face Hub Returns: dict: A dictionary with the tokenizer and its type. """ try: tokenizer = Tokenizer.from_pretrained( identifier, revision=revision, auth_token=auth_token # type: ignore ) except Exception as e: verbose_logger.error( f"Error creating pretrained tokenizer: {e}. Defaulting to version without 'auth_token'." ) tokenizer = Tokenizer.from_pretrained(identifier, revision=revision) return {"type": "huggingface_tokenizer", "tokenizer": tokenizer} def create_tokenizer(json: str): """ Creates a tokenizer from a valid JSON string for use with `token_counter`. Args: json (str): A valid JSON string representing a previously serialized tokenizer Returns: dict: A dictionary with the tokenizer and its type. """ tokenizer = Tokenizer.from_str(json) return {"type": "huggingface_tokenizer", "tokenizer": tokenizer} def _format_function_definitions(tools): """Formats tool definitions in the format that OpenAI appears to use. Based on https://github.com/forestwanglin/openai-java/blob/main/jtokkit/src/main/java/xyz/felh/openai/jtokkit/utils/TikTokenUtils.java """ lines = [] lines.append("namespace functions {") lines.append("") for tool in tools: function = tool.get("function") if function_description := function.get("description"): lines.append(f"// {function_description}") function_name = function.get("name") parameters = function.get("parameters", {}) properties = parameters.get("properties") if properties and properties.keys(): lines.append(f"type {function_name} = (_: {{") lines.append(_format_object_parameters(parameters, 0)) lines.append("}) => any;") else: lines.append(f"type {function_name} = () => any;") lines.append("") lines.append("} // namespace functions") return "\n".join(lines) def _format_object_parameters(parameters, indent): properties = parameters.get("properties") if not properties: return "" required_params = parameters.get("required", []) lines = [] for key, props in properties.items(): description = props.get("description") if description: lines.append(f"// {description}") question = "?" if required_params and key in required_params: question = "" lines.append(f"{key}{question}: {_format_type(props, indent)},") return "\n".join([" " * max(0, indent) + line for line in lines]) def _format_type(props, indent): type = props.get("type") if type == "string": if "enum" in props: return " | ".join([f'"{item}"' for item in props["enum"]]) return "string" elif type == "array": # items is required, OpenAI throws an error if it's missing return f"{_format_type(props['items'], indent)}[]" elif type == "object": return f"{{\n{_format_object_parameters(props, indent + 2)}\n}}" elif type in ["integer", "number"]: if "enum" in props: return " | ".join([f'"{item}"' for item in props["enum"]]) return "number" elif type == "boolean": return "boolean" elif type == "null": return "null" else: # This is a guess, as an empty string doesn't yield the expected token count return "any" def token_counter( model="", custom_tokenizer: Optional[Union[dict, SelectTokenizerResponse]] = None, text: Optional[Union[str, List[str]]] = None, messages: Optional[List] = None, count_response_tokens: Optional[bool] = False, tools: Optional[List[ChatCompletionToolParam]] = None, tool_choice: Optional[ChatCompletionNamedToolChoiceParam] = None, use_default_image_token_count: Optional[bool] = False, ) -> int: """ Count the number of tokens in a given text using a specified model. Args: model (str): The name of the model to use for tokenization. Default is an empty string. custom_tokenizer (Optional[dict]): A custom tokenizer created with the `create_pretrained_tokenizer` or `create_tokenizer` method. Must be a dictionary with a string value for `type` and Tokenizer for `tokenizer`. Default is None. text (str): The raw text string to be passed to the model. Default is None. messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None. Returns: int: The number of tokens in the text. """ # use tiktoken, anthropic, cohere, llama2, or llama3's tokenizer depending on the model is_tool_call = False num_tokens = 0 if text is None: if messages is not None: print_verbose(f"token_counter messages received: {messages}") text = "" for message in messages: if message.get("content", None) is not None: content = message.get("content") if isinstance(content, str): text += message["content"] elif isinstance(content, List): for c in content: if c["type"] == "text": text += c["text"] elif c["type"] == "image_url": if isinstance(c["image_url"], dict): image_url_dict = c["image_url"] detail = image_url_dict.get("detail", "auto") url = image_url_dict.get("url") num_tokens += calculate_img_tokens( data=url, mode=detail, use_default_image_token_count=use_default_image_token_count or False, ) elif isinstance(c["image_url"], str): image_url_str = c["image_url"] num_tokens += calculate_img_tokens( data=image_url_str, mode="auto", use_default_image_token_count=use_default_image_token_count or False, ) if message.get("tool_calls"): is_tool_call = True for tool_call in message["tool_calls"]: if "function" in tool_call: function_arguments = tool_call["function"]["arguments"] text += function_arguments else: raise ValueError("text and messages cannot both be None") elif isinstance(text, List): text = "".join(t for t in text if isinstance(t, str)) elif isinstance(text, str): count_response_tokens = True # user just trying to count tokens for a text. don't add the chat_ml +3 tokens to this if model is not None or custom_tokenizer is not None: tokenizer_json = custom_tokenizer or _select_tokenizer(model=model) if tokenizer_json["type"] == "huggingface_tokenizer": enc = tokenizer_json["tokenizer"].encode(text) num_tokens = len(enc.ids) elif tokenizer_json["type"] == "openai_tokenizer": if ( model in litellm.open_ai_chat_completion_models or model in litellm.azure_llms ): if model in litellm.azure_llms: # azure llms use gpt-35-turbo instead of gpt-3.5-turbo 🙃 model = model.replace("-35", "-3.5") print_verbose( f"Token Counter - using OpenAI token counter, for model={model}" ) num_tokens = openai_token_counter( text=text, # type: ignore model=model, messages=messages, is_tool_call=is_tool_call, count_response_tokens=count_response_tokens, tools=tools, tool_choice=tool_choice, use_default_image_token_count=use_default_image_token_count or False, ) else: print_verbose( f"Token Counter - using generic token counter, for model={model}" ) num_tokens = openai_token_counter( text=text, # type: ignore model="gpt-3.5-turbo", messages=messages, is_tool_call=is_tool_call, count_response_tokens=count_response_tokens, tools=tools, tool_choice=tool_choice, use_default_image_token_count=use_default_image_token_count or False, ) else: num_tokens = len(encoding.encode(text, disallowed_special=())) # type: ignore return num_tokens def supports_httpx_timeout(custom_llm_provider: str) -> bool: """ Helper function to know if a provider implementation supports httpx timeout """ supported_providers = ["openai", "azure", "bedrock"] if custom_llm_provider in supported_providers: return True return False def supports_system_messages(model: str, custom_llm_provider: Optional[str]) -> bool: """ Check if the given model supports system messages and return a boolean value. Parameters: model (str): The model name to be checked. custom_llm_provider (str): The provider to be checked. Returns: bool: True if the model supports system messages, False otherwise. Raises: Exception: If the given model is not found in model_prices_and_context_window.json. """ return _supports_factory( model=model, custom_llm_provider=custom_llm_provider, key="supports_system_messages", ) def supports_response_schema( model: str, custom_llm_provider: Optional[str] = None ) -> bool: """ Check if the given model + provider supports 'response_schema' as a param. Parameters: model (str): The model name to be checked. custom_llm_provider (str): The provider to be checked. Returns: bool: True if the model supports response_schema, False otherwise. Does not raise error. Defaults to 'False'. Outputs logging.error. """ ## GET LLM PROVIDER ## try: model, custom_llm_provider, _, _ = get_llm_provider( model=model, custom_llm_provider=custom_llm_provider ) except Exception as e: verbose_logger.debug( f"Model not found or error in checking response schema support. You passed model={model}, custom_llm_provider={custom_llm_provider}. Error: {str(e)}" ) return False # providers that globally support response schema PROVIDERS_GLOBALLY_SUPPORT_RESPONSE_SCHEMA = [ litellm.LlmProviders.PREDIBASE, litellm.LlmProviders.FIREWORKS_AI, ] if custom_llm_provider in PROVIDERS_GLOBALLY_SUPPORT_RESPONSE_SCHEMA: return True return _supports_factory( model=model, custom_llm_provider=custom_llm_provider, key="supports_response_schema", ) def supports_function_calling( model: str, custom_llm_provider: Optional[str] = None ) -> bool: """ Check if the given model supports function calling and return a boolean value. Parameters: model (str): The model name to be checked. custom_llm_provider (Optional[str]): The provider to be checked. Returns: bool: True if the model supports function calling, False otherwise. Raises: Exception: If the given model is not found or there's an error in retrieval. """ return _supports_factory( model=model, custom_llm_provider=custom_llm_provider, key="supports_function_calling", ) def supports_tool_choice(model: str, custom_llm_provider: Optional[str] = None) -> bool: """ Check if the given model supports `tool_choice` and return a boolean value. """ return _supports_factory( model=model, custom_llm_provider=custom_llm_provider, key="supports_tool_choice" ) def _supports_factory(model: str, custom_llm_provider: Optional[str], key: str) -> bool: """ Check if the given model supports function calling and return a boolean value. Parameters: model (str): The model name to be checked. custom_llm_provider (Optional[str]): The provider to be checked. Returns: bool: True if the model supports function calling, False otherwise. Raises: Exception: If the given model is not found or there's an error in retrieval. """ try: model, custom_llm_provider, _, _ = litellm.get_llm_provider( model=model, custom_llm_provider=custom_llm_provider ) model_info = _get_model_info_helper( model=model, custom_llm_provider=custom_llm_provider ) if model_info.get(key, False) is True: return True return False except Exception as e: verbose_logger.debug( f"Model not found or error in checking {key} support. You passed model={model}, custom_llm_provider={custom_llm_provider}. Error: {str(e)}" ) provider_info = get_provider_info( model=model, custom_llm_provider=custom_llm_provider ) if provider_info is not None and provider_info.get(key, False) is True: return True return False def supports_audio_input(model: str, custom_llm_provider: Optional[str] = None) -> bool: """Check if a given model supports audio input in a chat completion call""" return _supports_factory( model=model, custom_llm_provider=custom_llm_provider, key="supports_audio_input" ) def supports_pdf_input(model: str, custom_llm_provider: Optional[str] = None) -> bool: """Check if a given model supports pdf input in a chat completion call""" return _supports_factory( model=model, custom_llm_provider=custom_llm_provider, key="supports_pdf_input" ) def supports_audio_output( model: str, custom_llm_provider: Optional[str] = None ) -> bool: """Check if a given model supports audio output in a chat completion call""" return _supports_factory( model=model, custom_llm_provider=custom_llm_provider, key="supports_audio_input" ) def supports_prompt_caching( model: str, custom_llm_provider: Optional[str] = None ) -> bool: """ Check if the given model supports prompt caching and return a boolean value. Parameters: model (str): The model name to be checked. custom_llm_provider (Optional[str]): The provider to be checked. Returns: bool: True if the model supports prompt caching, False otherwise. Raises: Exception: If the given model is not found or there's an error in retrieval. """ return _supports_factory( model=model, custom_llm_provider=custom_llm_provider, key="supports_prompt_caching", ) def supports_vision(model: str, custom_llm_provider: Optional[str] = None) -> bool: """ Check if the given model supports vision and return a boolean value. Parameters: model (str): The model name to be checked. custom_llm_provider (Optional[str]): The provider to be checked. Returns: bool: True if the model supports vision, False otherwise. """ return _supports_factory( model=model, custom_llm_provider=custom_llm_provider, key="supports_vision", ) def supports_embedding_image_input( model: str, custom_llm_provider: Optional[str] = None ) -> bool: """ Check if the given model supports embedding image input and return a boolean value. """ return _supports_factory( model=model, custom_llm_provider=custom_llm_provider, key="supports_embedding_image_input", ) def supports_parallel_function_calling(model: str): """ Check if the given model supports parallel function calling and return True if it does, False otherwise. Parameters: model (str): The model to check for support of parallel function calling. Returns: bool: True if the model supports parallel function calling, False otherwise. Raises: Exception: If the model is not found in the model_cost dictionary. """ if model in litellm.model_cost: model_info = litellm.model_cost[model] if model_info.get("supports_parallel_function_calling", False) is True: return True return False else: raise Exception( f"Model not supports parallel function calling. You passed model={model}." ) ####### HELPER FUNCTIONS ################ def _update_dictionary(existing_dict: Dict, new_dict: dict) -> dict: for k, v in new_dict.items(): existing_dict[k] = v return existing_dict def register_model(model_cost: Union[str, dict]): # noqa: PLR0915 """ Register new / Override existing models (and their pricing) to specific providers. Provide EITHER a model cost dictionary or a url to a hosted json blob Example usage: model_cost_dict = { "gpt-4": { "max_tokens": 8192, "input_cost_per_token": 0.00003, "output_cost_per_token": 0.00006, "litellm_provider": "openai", "mode": "chat" }, } """ loaded_model_cost = {} if isinstance(model_cost, dict): loaded_model_cost = model_cost elif isinstance(model_cost, str): loaded_model_cost = litellm.get_model_cost_map(url=model_cost) for key, value in loaded_model_cost.items(): ## get model info ## try: existing_model: dict = cast(dict, get_model_info(model=key)) model_cost_key = existing_model["key"] except Exception: existing_model = {} model_cost_key = key ## override / add new keys to the existing model cost dictionary updated_dictionary = _update_dictionary(existing_model, value) litellm.model_cost.setdefault(model_cost_key, {}).update(updated_dictionary) verbose_logger.debug( f"added/updated model={model_cost_key} in litellm.model_cost: {model_cost_key}" ) # add new model names to provider lists if value.get("litellm_provider") == "openai": if key not in litellm.open_ai_chat_completion_models: litellm.open_ai_chat_completion_models.append(key) elif value.get("litellm_provider") == "text-completion-openai": if key not in litellm.open_ai_text_completion_models: litellm.open_ai_text_completion_models.append(key) elif value.get("litellm_provider") == "cohere": if key not in litellm.cohere_models: litellm.cohere_models.append(key) elif value.get("litellm_provider") == "anthropic": if key not in litellm.anthropic_models: litellm.anthropic_models.append(key) elif value.get("litellm_provider") == "openrouter": split_string = key.split("/", 1) if key not in litellm.openrouter_models: litellm.openrouter_models.append(split_string[1]) elif value.get("litellm_provider") == "vertex_ai-text-models": if key not in litellm.vertex_text_models: litellm.vertex_text_models.append(key) elif value.get("litellm_provider") == "vertex_ai-code-text-models": if key not in litellm.vertex_code_text_models: litellm.vertex_code_text_models.append(key) elif value.get("litellm_provider") == "vertex_ai-chat-models": if key not in litellm.vertex_chat_models: litellm.vertex_chat_models.append(key) elif value.get("litellm_provider") == "vertex_ai-code-chat-models": if key not in litellm.vertex_code_chat_models: litellm.vertex_code_chat_models.append(key) elif value.get("litellm_provider") == "ai21": if key not in litellm.ai21_models: litellm.ai21_models.append(key) elif value.get("litellm_provider") == "nlp_cloud": if key not in litellm.nlp_cloud_models: litellm.nlp_cloud_models.append(key) elif value.get("litellm_provider") == "aleph_alpha": if key not in litellm.aleph_alpha_models: litellm.aleph_alpha_models.append(key) elif value.get("litellm_provider") == "bedrock": if key not in litellm.bedrock_models: litellm.bedrock_models.append(key) return model_cost def _should_drop_param(k, additional_drop_params) -> bool: if ( additional_drop_params is not None and isinstance(additional_drop_params, list) and k in additional_drop_params ): return True # allow user to drop specific params for a model - e.g. vllm - logit bias return False def _get_non_default_params( passed_params: dict, default_params: dict, additional_drop_params: Optional[bool] ) -> dict: non_default_params = {} for k, v in passed_params.items(): if ( k in default_params and v != default_params[k] and _should_drop_param(k=k, additional_drop_params=additional_drop_params) is False ): non_default_params[k] = v return non_default_params def get_optional_params_transcription( model: str, language: Optional[str] = None, prompt: Optional[str] = None, response_format: Optional[str] = None, temperature: Optional[int] = None, timestamp_granularities: Optional[List[Literal["word", "segment"]]] = None, custom_llm_provider: Optional[str] = None, drop_params: Optional[bool] = None, **kwargs, ): # retrieve all parameters passed to the function passed_params = locals() custom_llm_provider = passed_params.pop("custom_llm_provider") drop_params = passed_params.pop("drop_params") special_params = passed_params.pop("kwargs") for k, v in special_params.items(): passed_params[k] = v default_params = { "language": None, "prompt": None, "response_format": None, "temperature": None, # openai defaults this to 0 } non_default_params = { k: v for k, v in passed_params.items() if (k in default_params and v != default_params[k]) } optional_params = {} ## raise exception if non-default value passed for non-openai/azure embedding calls def _check_valid_arg(supported_params): if len(non_default_params.keys()) > 0: keys = list(non_default_params.keys()) for k in keys: if ( drop_params is True or litellm.drop_params is True ) and k not in supported_params: # drop the unsupported non-default values non_default_params.pop(k, None) elif k not in supported_params: raise UnsupportedParamsError( status_code=500, message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.", ) return non_default_params provider_config: Optional[BaseAudioTranscriptionConfig] = None if custom_llm_provider is not None: provider_config = ProviderConfigManager.get_provider_audio_transcription_config( model=model, provider=LlmProviders(custom_llm_provider), ) if custom_llm_provider == "openai" or custom_llm_provider == "azure": optional_params = non_default_params elif custom_llm_provider == "groq": supported_params = litellm.GroqSTTConfig().get_supported_openai_params_stt() _check_valid_arg(supported_params=supported_params) optional_params = litellm.GroqSTTConfig().map_openai_params_stt( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=drop_params if drop_params is not None else False, ) elif provider_config is not None: # handles fireworks ai, and any future providers supported_params = provider_config.get_supported_openai_params(model=model) _check_valid_arg(supported_params=supported_params) optional_params = provider_config.map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=drop_params if drop_params is not None else False, ) for k in passed_params.keys(): # pass additional kwargs without modification if k not in default_params.keys(): optional_params[k] = passed_params[k] return optional_params def get_optional_params_image_gen( model: Optional[str] = None, n: Optional[int] = None, quality: Optional[str] = None, response_format: Optional[str] = None, size: Optional[str] = None, style: Optional[str] = None, user: Optional[str] = None, custom_llm_provider: Optional[str] = None, additional_drop_params: Optional[bool] = None, **kwargs, ): # retrieve all parameters passed to the function passed_params = locals() model = passed_params.pop("model", None) custom_llm_provider = passed_params.pop("custom_llm_provider") additional_drop_params = passed_params.pop("additional_drop_params", None) special_params = passed_params.pop("kwargs") for k, v in special_params.items(): if k.startswith("aws_") and ( custom_llm_provider != "bedrock" and custom_llm_provider != "sagemaker" ): # allow dynamically setting boto3 init logic continue elif k == "hf_model_name" and custom_llm_provider != "sagemaker": continue elif ( k.startswith("vertex_") and custom_llm_provider != "vertex_ai" and custom_llm_provider != "vertex_ai_beta" ): # allow dynamically setting vertex ai init logic continue passed_params[k] = v default_params = { "n": None, "quality": None, "response_format": None, "size": None, "style": None, "user": None, } non_default_params = _get_non_default_params( passed_params=passed_params, default_params=default_params, additional_drop_params=additional_drop_params, ) optional_params = {} ## raise exception if non-default value passed for non-openai/azure embedding calls def _check_valid_arg(supported_params): if len(non_default_params.keys()) > 0: keys = list(non_default_params.keys()) for k in keys: if ( litellm.drop_params is True and k not in supported_params ): # drop the unsupported non-default values non_default_params.pop(k, None) elif k not in supported_params: raise UnsupportedParamsError( status_code=500, message=f"Setting `{k}` is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.", ) return non_default_params if ( custom_llm_provider == "openai" or custom_llm_provider == "azure" or custom_llm_provider in litellm.openai_compatible_providers ): optional_params = non_default_params elif custom_llm_provider == "bedrock": # use stability3 config class if model is a stability3 model config_class = ( litellm.AmazonStability3Config if litellm.AmazonStability3Config._is_stability_3_model(model=model) else litellm.AmazonStabilityConfig ) supported_params = config_class.get_supported_openai_params(model=model) _check_valid_arg(supported_params=supported_params) optional_params = config_class.map_openai_params( non_default_params=non_default_params, optional_params={} ) elif custom_llm_provider == "vertex_ai": supported_params = ["n"] """ All params here: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/imagegeneration?project=adroit-crow-413218 """ _check_valid_arg(supported_params=supported_params) if n is not None: optional_params["sampleCount"] = int(n) for k in passed_params.keys(): if k not in default_params.keys(): optional_params[k] = passed_params[k] return optional_params def get_optional_params_embeddings( # noqa: PLR0915 # 2 optional params model: str, user: Optional[str] = None, encoding_format: Optional[str] = None, dimensions: Optional[int] = None, custom_llm_provider="", drop_params: Optional[bool] = None, additional_drop_params: Optional[bool] = None, **kwargs, ): # retrieve all parameters passed to the function passed_params = locals() custom_llm_provider = passed_params.pop("custom_llm_provider", None) special_params = passed_params.pop("kwargs") for k, v in special_params.items(): passed_params[k] = v drop_params = passed_params.pop("drop_params", None) additional_drop_params = passed_params.pop("additional_drop_params", None) default_params = {"user": None, "encoding_format": None, "dimensions": None} def _check_valid_arg(supported_params: Optional[list]): if supported_params is None: return unsupported_params = {} for k in non_default_params.keys(): if k not in supported_params: unsupported_params[k] = non_default_params[k] if unsupported_params: if litellm.drop_params is True or ( drop_params is not None and drop_params is True ): pass else: raise UnsupportedParamsError( status_code=500, message=f"{custom_llm_provider} does not support parameters: {unsupported_params}, for model={model}. To drop these, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\n", ) non_default_params = _get_non_default_params( passed_params=passed_params, default_params=default_params, additional_drop_params=additional_drop_params, ) ## raise exception if non-default value passed for non-openai/azure embedding calls if custom_llm_provider == "openai": # 'dimensions` is only supported in `text-embedding-3` and later models if ( model is not None and "text-embedding-3" not in model and "dimensions" in non_default_params.keys() ): raise UnsupportedParamsError( status_code=500, message="Setting dimensions is not supported for OpenAI `text-embedding-3` and later models. To drop it from the call, set `litellm.drop_params = True`.", ) elif custom_llm_provider == "triton": supported_params = get_supported_openai_params( model=model, custom_llm_provider=custom_llm_provider, request_type="embeddings", ) _check_valid_arg(supported_params=supported_params) optional_params = litellm.TritonEmbeddingConfig().map_openai_params( non_default_params=non_default_params, optional_params={}, model=model, drop_params=drop_params if drop_params is not None else False, ) final_params = {**optional_params, **kwargs} return final_params elif custom_llm_provider == "databricks": supported_params = get_supported_openai_params( model=model or "", custom_llm_provider="databricks", request_type="embeddings", ) _check_valid_arg(supported_params=supported_params) optional_params = litellm.DatabricksEmbeddingConfig().map_openai_params( non_default_params=non_default_params, optional_params={} ) final_params = {**optional_params, **kwargs} return final_params elif custom_llm_provider == "nvidia_nim": supported_params = get_supported_openai_params( model=model or "", custom_llm_provider="nvidia_nim", request_type="embeddings", ) _check_valid_arg(supported_params=supported_params) optional_params = litellm.nvidiaNimEmbeddingConfig.map_openai_params( non_default_params=non_default_params, optional_params={}, kwargs=kwargs ) return optional_params elif custom_llm_provider == "vertex_ai": supported_params = get_supported_openai_params( model=model, custom_llm_provider="vertex_ai", request_type="embeddings", ) _check_valid_arg(supported_params=supported_params) ( optional_params, kwargs, ) = litellm.VertexAITextEmbeddingConfig().map_openai_params( non_default_params=non_default_params, optional_params={}, kwargs=kwargs ) final_params = {**optional_params, **kwargs} return final_params elif custom_llm_provider == "lm_studio": supported_params = ( litellm.LmStudioEmbeddingConfig().get_supported_openai_params() ) _check_valid_arg(supported_params=supported_params) optional_params = litellm.LmStudioEmbeddingConfig().map_openai_params( non_default_params=non_default_params, optional_params={} ) final_params = {**optional_params, **kwargs} return final_params elif custom_llm_provider == "bedrock": # if dimensions is in non_default_params -> pass it for model=bedrock/amazon.titan-embed-text-v2 if "amazon.titan-embed-text-v1" in model: object: Any = litellm.AmazonTitanG1Config() elif "amazon.titan-embed-image-v1" in model: object = litellm.AmazonTitanMultimodalEmbeddingG1Config() elif "amazon.titan-embed-text-v2:0" in model: object = litellm.AmazonTitanV2Config() elif "cohere.embed-multilingual-v3" in model: object = litellm.BedrockCohereEmbeddingConfig() else: # unmapped model supported_params = [] _check_valid_arg(supported_params=supported_params) final_params = {**kwargs} return final_params supported_params = object.get_supported_openai_params() _check_valid_arg(supported_params=supported_params) optional_params = object.map_openai_params( non_default_params=non_default_params, optional_params={} ) final_params = {**optional_params, **kwargs} return final_params elif custom_llm_provider == "mistral": supported_params = get_supported_openai_params( model=model, custom_llm_provider="mistral", request_type="embeddings", ) _check_valid_arg(supported_params=supported_params) optional_params = litellm.MistralEmbeddingConfig().map_openai_params( non_default_params=non_default_params, optional_params={} ) final_params = {**optional_params, **kwargs} return final_params elif custom_llm_provider == "jina_ai": supported_params = get_supported_openai_params( model=model, custom_llm_provider="jina_ai", request_type="embeddings", ) _check_valid_arg(supported_params=supported_params) optional_params = litellm.JinaAIEmbeddingConfig().map_openai_params( non_default_params=non_default_params, optional_params={} ) final_params = {**optional_params, **kwargs} return final_params elif custom_llm_provider == "voyage": supported_params = get_supported_openai_params( model=model, custom_llm_provider="voyage", request_type="embeddings", ) _check_valid_arg(supported_params=supported_params) optional_params = litellm.VoyageEmbeddingConfig().map_openai_params( non_default_params=non_default_params, optional_params={}, model=model, drop_params=drop_params if drop_params is not None else False, ) final_params = {**optional_params, **kwargs} return final_params elif custom_llm_provider == "fireworks_ai": supported_params = get_supported_openai_params( model=model, custom_llm_provider="fireworks_ai", request_type="embeddings", ) _check_valid_arg(supported_params=supported_params) optional_params = litellm.FireworksAIEmbeddingConfig().map_openai_params( non_default_params=non_default_params, optional_params={}, model=model ) final_params = {**optional_params, **kwargs} return final_params elif ( custom_llm_provider != "openai" and custom_llm_provider != "azure" and custom_llm_provider not in litellm.openai_compatible_providers ): if len(non_default_params.keys()) > 0: if ( litellm.drop_params is True or drop_params is True ): # drop the unsupported non-default values keys = list(non_default_params.keys()) for k in keys: non_default_params.pop(k, None) else: raise UnsupportedParamsError( status_code=500, message=f"Setting {non_default_params} is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.", ) final_params = {**non_default_params, **kwargs} return final_params def _remove_additional_properties(schema): """ clean out 'additionalProperties = False'. Causes vertexai/gemini OpenAI API Schema errors - https://github.com/langchain-ai/langchainjs/issues/5240 Relevant Issues: https://github.com/BerriAI/litellm/issues/6136, https://github.com/BerriAI/litellm/issues/6088 """ if isinstance(schema, dict): # Remove the 'additionalProperties' key if it exists and is set to False if "additionalProperties" in schema and schema["additionalProperties"] is False: del schema["additionalProperties"] # Recursively process all dictionary values for key, value in schema.items(): _remove_additional_properties(value) elif isinstance(schema, list): # Recursively process all items in the list for item in schema: _remove_additional_properties(item) return schema def _remove_strict_from_schema(schema): """ Relevant Issues: https://github.com/BerriAI/litellm/issues/6136, https://github.com/BerriAI/litellm/issues/6088 """ if isinstance(schema, dict): # Remove the 'additionalProperties' key if it exists and is set to False if "strict" in schema: del schema["strict"] # Recursively process all dictionary values for key, value in schema.items(): _remove_strict_from_schema(value) elif isinstance(schema, list): # Recursively process all items in the list for item in schema: _remove_strict_from_schema(item) return schema def _remove_unsupported_params( non_default_params: dict, supported_openai_params: Optional[List[str]] ) -> dict: """ Remove unsupported params from non_default_params """ remove_keys = [] if supported_openai_params is None: return {} # no supported params, so no optional openai params to send for param in non_default_params.keys(): if param not in supported_openai_params: remove_keys.append(param) for key in remove_keys: non_default_params.pop(key, None) return non_default_params def get_optional_params( # noqa: PLR0915 # use the openai defaults # https://platform.openai.com/docs/api-reference/chat/create model: str, functions=None, function_call=None, temperature=None, top_p=None, n=None, stream=False, stream_options=None, stop=None, max_tokens=None, max_completion_tokens=None, modalities=None, prediction=None, audio=None, presence_penalty=None, frequency_penalty=None, logit_bias=None, user=None, custom_llm_provider="", response_format=None, seed=None, tools=None, tool_choice=None, max_retries=None, logprobs=None, top_logprobs=None, extra_headers=None, api_version=None, parallel_tool_calls=None, drop_params=None, reasoning_effort=None, additional_drop_params=None, messages: Optional[List[AllMessageValues]] = None, **kwargs, ): # retrieve all parameters passed to the function passed_params = locals().copy() special_params = passed_params.pop("kwargs") for k, v in special_params.items(): if k.startswith("aws_") and ( custom_llm_provider != "bedrock" and custom_llm_provider != "sagemaker" ): # allow dynamically setting boto3 init logic continue elif k == "hf_model_name" and custom_llm_provider != "sagemaker": continue elif ( k.startswith("vertex_") and custom_llm_provider != "vertex_ai" and custom_llm_provider != "vertex_ai_beta" ): # allow dynamically setting vertex ai init logic continue passed_params[k] = v optional_params: Dict = {} common_auth_dict = litellm.common_cloud_provider_auth_params if custom_llm_provider in common_auth_dict["providers"]: """ Check if params = ["project", "region_name", "token"] and correctly translate for = ["azure", "vertex_ai", "watsonx", "aws"] """ if custom_llm_provider == "azure": optional_params = litellm.AzureOpenAIConfig().map_special_auth_params( non_default_params=passed_params, optional_params=optional_params ) elif custom_llm_provider == "bedrock": optional_params = ( litellm.AmazonBedrockGlobalConfig().map_special_auth_params( non_default_params=passed_params, optional_params=optional_params ) ) elif ( custom_llm_provider == "vertex_ai" or custom_llm_provider == "vertex_ai_beta" ): optional_params = litellm.VertexAIConfig().map_special_auth_params( non_default_params=passed_params, optional_params=optional_params ) elif custom_llm_provider == "watsonx": optional_params = litellm.IBMWatsonXAIConfig().map_special_auth_params( non_default_params=passed_params, optional_params=optional_params ) default_params = { "functions": None, "function_call": None, "temperature": None, "top_p": None, "n": None, "stream": None, "stream_options": None, "stop": None, "max_tokens": None, "max_completion_tokens": None, "modalities": None, "prediction": None, "audio": None, "presence_penalty": None, "frequency_penalty": None, "logit_bias": None, "user": None, "model": None, "custom_llm_provider": "", "response_format": None, "seed": None, "tools": None, "tool_choice": None, "max_retries": None, "logprobs": None, "top_logprobs": None, "extra_headers": None, "api_version": None, "parallel_tool_calls": None, "drop_params": None, "additional_drop_params": None, "messages": None, "reasoning_effort": None, } # filter out those parameters that were passed with non-default values non_default_params = { k: v for k, v in passed_params.items() if ( k != "model" and k != "custom_llm_provider" and k != "api_version" and k != "drop_params" and k != "additional_drop_params" and k != "messages" and k in default_params and v != default_params[k] and _should_drop_param(k=k, additional_drop_params=additional_drop_params) is False ) } ## raise exception if function calling passed in for a provider that doesn't support it if ( "functions" in non_default_params or "function_call" in non_default_params or "tools" in non_default_params ): if ( custom_llm_provider == "ollama" and custom_llm_provider != "text-completion-openai" and custom_llm_provider != "azure" and custom_llm_provider != "vertex_ai" and custom_llm_provider != "anyscale" and custom_llm_provider != "together_ai" and custom_llm_provider != "groq" and custom_llm_provider != "nvidia_nim" and custom_llm_provider != "cerebras" and custom_llm_provider != "xai" and custom_llm_provider != "ai21_chat" and custom_llm_provider != "volcengine" and custom_llm_provider != "deepseek" and custom_llm_provider != "codestral" and custom_llm_provider != "mistral" and custom_llm_provider != "anthropic" and custom_llm_provider != "cohere_chat" and custom_llm_provider != "cohere" and custom_llm_provider != "bedrock" and custom_llm_provider != "ollama_chat" and custom_llm_provider != "openrouter" and custom_llm_provider not in litellm.openai_compatible_providers ): if custom_llm_provider == "ollama": # ollama actually supports json output optional_params["format"] = "json" litellm.add_function_to_prompt = ( True # so that main.py adds the function call to the prompt ) if "tools" in non_default_params: optional_params["functions_unsupported_model"] = ( non_default_params.pop("tools") ) non_default_params.pop( "tool_choice", None ) # causes ollama requests to hang elif "functions" in non_default_params: optional_params["functions_unsupported_model"] = ( non_default_params.pop("functions") ) elif ( litellm.add_function_to_prompt ): # if user opts to add it to prompt instead optional_params["functions_unsupported_model"] = non_default_params.pop( "tools", non_default_params.pop("functions", None) ) else: raise UnsupportedParamsError( status_code=500, message=f"Function calling is not supported by {custom_llm_provider}.", ) provider_config: Optional[BaseConfig] = None if custom_llm_provider is not None and custom_llm_provider in [ provider.value for provider in LlmProviders ]: provider_config = ProviderConfigManager.get_provider_chat_config( model=model, provider=LlmProviders(custom_llm_provider) ) if "response_format" in non_default_params: if provider_config is not None: non_default_params["response_format"] = ( provider_config.get_json_schema_from_pydantic_object( response_format=non_default_params["response_format"] ) ) else: non_default_params["response_format"] = type_to_response_format_param( response_format=non_default_params["response_format"] ) if "tools" in non_default_params and isinstance( non_default_params, list ): # fixes https://github.com/BerriAI/litellm/issues/4933 tools = non_default_params["tools"] for ( tool ) in ( tools ): # clean out 'additionalProperties = False'. Causes vertexai/gemini OpenAI API Schema errors - https://github.com/langchain-ai/langchainjs/issues/5240 tool_function = tool.get("function", {}) parameters = tool_function.get("parameters", None) if parameters is not None: new_parameters = copy.deepcopy(parameters) if ( "additionalProperties" in new_parameters and new_parameters["additionalProperties"] is False ): new_parameters.pop("additionalProperties", None) tool_function["parameters"] = new_parameters def _check_valid_arg(supported_params: List[str]): verbose_logger.info( f"\nLiteLLM completion() model= {model}; provider = {custom_llm_provider}" ) verbose_logger.debug( f"\nLiteLLM: Params passed to completion() {passed_params}" ) verbose_logger.debug( f"\nLiteLLM: Non-Default params passed to completion() {non_default_params}" ) unsupported_params = {} for k in non_default_params.keys(): if k not in supported_params: if k == "user" or k == "stream_options" or k == "stream": continue if k == "n" and n == 1: # langchain sends n=1 as a default value continue # skip this param if ( k == "max_retries" ): # TODO: This is a patch. We support max retries for OpenAI, Azure. For non OpenAI LLMs we need to add support for max retries continue # skip this param # Always keeps this in elif code blocks else: unsupported_params[k] = non_default_params[k] if unsupported_params: if litellm.drop_params is True or ( drop_params is not None and drop_params is True ): for k in unsupported_params.keys(): non_default_params.pop(k, None) else: raise UnsupportedParamsError( status_code=500, message=f"{custom_llm_provider} does not support parameters: {unsupported_params}, for model={model}. To drop these, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\n", ) supported_params = get_supported_openai_params( model=model, custom_llm_provider=custom_llm_provider ) if supported_params is None: supported_params = get_supported_openai_params( model=model, custom_llm_provider="openai" ) _check_valid_arg(supported_params=supported_params or []) ## raise exception if provider doesn't support passed in param if custom_llm_provider == "anthropic": ## check if unsupported param passed in optional_params = litellm.AnthropicConfig().map_openai_params( model=model, non_default_params=non_default_params, optional_params=optional_params, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "anthropic_text": optional_params = litellm.AnthropicTextConfig().map_openai_params( model=model, non_default_params=non_default_params, optional_params=optional_params, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) optional_params = litellm.AnthropicTextConfig().map_openai_params( model=model, non_default_params=non_default_params, optional_params=optional_params, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "cohere": ## check if unsupported param passed in # handle cohere params optional_params = litellm.CohereConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "cohere_chat": # handle cohere params optional_params = litellm.CohereChatConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "triton": optional_params = litellm.TritonConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=drop_params if drop_params is not None else False, ) elif custom_llm_provider == "maritalk": optional_params = litellm.MaritalkConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "replicate": optional_params = litellm.ReplicateConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "predibase": optional_params = litellm.PredibaseConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "huggingface": optional_params = litellm.HuggingfaceConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "together_ai": optional_params = litellm.TogetherAIConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "vertex_ai" and ( model in litellm.vertex_chat_models or model in litellm.vertex_code_chat_models or model in litellm.vertex_text_models or model in litellm.vertex_code_text_models or model in litellm.vertex_language_models or model in litellm.vertex_vision_models ): optional_params = litellm.VertexGeminiConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "gemini": optional_params = litellm.GoogleAIStudioGeminiConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "vertex_ai_beta" or ( custom_llm_provider == "vertex_ai" and "gemini" in model ): optional_params = litellm.VertexGeminiConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif litellm.VertexAIAnthropicConfig.is_supported_model( model=model, custom_llm_provider=custom_llm_provider ): optional_params = litellm.VertexAIAnthropicConfig().map_openai_params( model=model, non_default_params=non_default_params, optional_params=optional_params, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "vertex_ai" and model in litellm.vertex_llama3_models: optional_params = litellm.VertexAILlama3Config().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "vertex_ai" and model in litellm.vertex_mistral_models: if "codestral" in model: optional_params = litellm.CodestralTextCompletionConfig().map_openai_params( model=model, non_default_params=non_default_params, optional_params=optional_params, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) else: optional_params = litellm.MistralConfig().map_openai_params( model=model, non_default_params=non_default_params, optional_params=optional_params, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "vertex_ai" and model in litellm.vertex_ai_ai21_models: optional_params = litellm.VertexAIAi21Config().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "sagemaker": # temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None optional_params = litellm.SagemakerConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "bedrock": base_model = litellm.AmazonConverseConfig()._get_base_model(model) if base_model in litellm.bedrock_converse_models: optional_params = litellm.AmazonConverseConfig().map_openai_params( model=model, non_default_params=non_default_params, optional_params=optional_params, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), messages=messages, ) elif "anthropic" in model: if "aws_bedrock_client" in passed_params: # deprecated boto3.invoke route. if model.startswith("anthropic.claude-3"): optional_params = ( litellm.AmazonAnthropicClaude3Config().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, ) ) else: optional_params = litellm.AmazonAnthropicConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, ) elif provider_config is not None: optional_params = provider_config.map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "cloudflare": optional_params = litellm.CloudflareChatConfig().map_openai_params( model=model, non_default_params=non_default_params, optional_params=optional_params, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "ollama": optional_params = litellm.OllamaConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "ollama_chat": optional_params = litellm.OllamaChatConfig().map_openai_params( model=model, non_default_params=non_default_params, optional_params=optional_params, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "nlp_cloud": optional_params = litellm.NLPCloudConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "petals": optional_params = litellm.PetalsConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "deepinfra": optional_params = litellm.DeepInfraConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "perplexity" and provider_config is not None: optional_params = provider_config.map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "mistral" or custom_llm_provider == "codestral": optional_params = litellm.MistralConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "text-completion-codestral": optional_params = litellm.CodestralTextCompletionConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "databricks": optional_params = litellm.DatabricksConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "nvidia_nim": optional_params = litellm.NvidiaNimConfig().map_openai_params( model=model, non_default_params=non_default_params, optional_params=optional_params, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "cerebras": optional_params = litellm.CerebrasConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "xai": optional_params = litellm.XAIChatConfig().map_openai_params( model=model, non_default_params=non_default_params, optional_params=optional_params, ) elif custom_llm_provider == "ai21_chat" or custom_llm_provider == "ai21": optional_params = litellm.AI21ChatConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "fireworks_ai": optional_params = litellm.FireworksAIConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "volcengine": optional_params = litellm.VolcEngineConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "hosted_vllm": optional_params = litellm.HostedVLLMChatConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "vllm": optional_params = litellm.VLLMConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "groq": optional_params = litellm.GroqChatConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "deepseek": optional_params = litellm.OpenAIConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "openrouter": optional_params = litellm.OpenrouterConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "watsonx": optional_params = litellm.IBMWatsonXChatConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) # WatsonX-text param check for param in passed_params.keys(): if litellm.IBMWatsonXAIConfig().is_watsonx_text_param(param): raise ValueError( f"LiteLLM now defaults to Watsonx's `/text/chat` endpoint. Please use the `watsonx_text` provider instead, to call the `/text/generation` endpoint. Param: {param}" ) elif custom_llm_provider == "watsonx_text": optional_params = litellm.IBMWatsonXAIConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "openai": optional_params = litellm.OpenAIConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) elif custom_llm_provider == "azure": if litellm.AzureOpenAIO1Config().is_o_series_model(model=model): optional_params = litellm.AzureOpenAIO1Config().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) else: verbose_logger.debug( "Azure optional params - api_version: api_version={}, litellm.api_version={}, os.environ['AZURE_API_VERSION']={}".format( api_version, litellm.api_version, get_secret("AZURE_API_VERSION") ) ) api_version = ( api_version or litellm.api_version or get_secret("AZURE_API_VERSION") or litellm.AZURE_DEFAULT_API_VERSION ) optional_params = litellm.AzureOpenAIConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, api_version=api_version, # type: ignore drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) else: # assume passing in params for openai-like api optional_params = litellm.OpenAILikeChatConfig().map_openai_params( non_default_params=non_default_params, optional_params=optional_params, model=model, drop_params=( drop_params if drop_params is not None and isinstance(drop_params, bool) else False ), ) if ( custom_llm_provider in ["openai", "azure", "text-completion-openai"] + litellm.openai_compatible_providers ): # for openai, azure we should pass the extra/passed params within `extra_body` https://github.com/openai/openai-python/blob/ac33853ba10d13ac149b1fa3ca6dba7d613065c9/src/openai/resources/models.py#L46 if ( _should_drop_param( k="extra_body", additional_drop_params=additional_drop_params ) is False ): extra_body = passed_params.pop("extra_body", {}) for k in passed_params.keys(): if k not in default_params.keys(): extra_body[k] = passed_params[k] optional_params.setdefault("extra_body", {}) optional_params["extra_body"] = { **optional_params["extra_body"], **extra_body, } optional_params["extra_body"] = _ensure_extra_body_is_safe( extra_body=optional_params["extra_body"] ) else: # if user passed in non-default kwargs for specific providers/models, pass them along for k in passed_params.keys(): if k not in default_params.keys(): optional_params[k] = passed_params[k] print_verbose(f"Final returned optional params: {optional_params}") return optional_params def get_non_default_params(passed_params: dict) -> dict: default_params = { "functions": None, "function_call": None, "temperature": None, "top_p": None, "n": None, "stream": None, "stream_options": None, "stop": None, "max_tokens": None, "presence_penalty": None, "frequency_penalty": None, "logit_bias": None, "user": None, "model": None, "custom_llm_provider": "", "response_format": None, "seed": None, "tools": None, "tool_choice": None, "max_retries": None, "logprobs": None, "top_logprobs": None, "extra_headers": None, } # filter out those parameters that were passed with non-default values non_default_params = { k: v for k, v in passed_params.items() if ( k != "model" and k != "custom_llm_provider" and k in default_params and v != default_params[k] ) } return non_default_params def calculate_max_parallel_requests( max_parallel_requests: Optional[int], rpm: Optional[int], tpm: Optional[int], default_max_parallel_requests: Optional[int], ) -> Optional[int]: """ Returns the max parallel requests to send to a deployment. Used in semaphore for async requests on router. Parameters: - max_parallel_requests - Optional[int] - max_parallel_requests allowed for that deployment - rpm - Optional[int] - requests per minute allowed for that deployment - tpm - Optional[int] - tokens per minute allowed for that deployment - default_max_parallel_requests - Optional[int] - default_max_parallel_requests allowed for any deployment Returns: - int or None (if all params are None) Order: max_parallel_requests > rpm > tpm / 6 (azure formula) > default max_parallel_requests Azure RPM formula: 6 rpm per 1000 TPM https://learn.microsoft.com/en-us/azure/ai-services/openai/quotas-limits """ if max_parallel_requests is not None: return max_parallel_requests elif rpm is not None: return rpm elif tpm is not None: calculated_rpm = int(tpm / 1000 / 6) if calculated_rpm == 0: calculated_rpm = 1 return calculated_rpm elif default_max_parallel_requests is not None: return default_max_parallel_requests return None def _get_order_filtered_deployments(healthy_deployments: List[Dict]) -> List: min_order = min( ( deployment["litellm_params"]["order"] for deployment in healthy_deployments if "order" in deployment["litellm_params"] ), default=None, ) if min_order is not None: filtered_deployments = [ deployment for deployment in healthy_deployments if deployment["litellm_params"].get("order") == min_order ] return filtered_deployments return healthy_deployments def _get_model_region( custom_llm_provider: str, litellm_params: LiteLLM_Params ) -> Optional[str]: """ Return the region for a model, for a given provider """ if custom_llm_provider == "vertex_ai": # check 'vertex_location' vertex_ai_location = ( litellm_params.vertex_location or litellm.vertex_location or get_secret("VERTEXAI_LOCATION") or get_secret("VERTEX_LOCATION") ) if vertex_ai_location is not None and isinstance(vertex_ai_location, str): return vertex_ai_location elif custom_llm_provider == "bedrock": aws_region_name = litellm_params.aws_region_name if aws_region_name is not None: return aws_region_name elif custom_llm_provider == "watsonx": watsonx_region_name = litellm_params.watsonx_region_name if watsonx_region_name is not None: return watsonx_region_name return litellm_params.region_name def _infer_model_region(litellm_params: LiteLLM_Params) -> Optional[AllowedModelRegion]: """ Infer if a model is in the EU or US region Returns: - str (region) - "eu" or "us" - None (if region not found) """ model, custom_llm_provider, _, _ = litellm.get_llm_provider( model=litellm_params.model, litellm_params=litellm_params ) model_region = _get_model_region( custom_llm_provider=custom_llm_provider, litellm_params=litellm_params ) if model_region is None: verbose_logger.debug( "Cannot infer model region for model: {}".format(litellm_params.model) ) return None if custom_llm_provider == "azure": eu_regions = litellm.AzureOpenAIConfig().get_eu_regions() us_regions = litellm.AzureOpenAIConfig().get_us_regions() elif custom_llm_provider == "vertex_ai": eu_regions = litellm.VertexAIConfig().get_eu_regions() us_regions = litellm.VertexAIConfig().get_us_regions() elif custom_llm_provider == "bedrock": eu_regions = litellm.AmazonBedrockGlobalConfig().get_eu_regions() us_regions = litellm.AmazonBedrockGlobalConfig().get_us_regions() elif custom_llm_provider == "watsonx": eu_regions = litellm.IBMWatsonXAIConfig().get_eu_regions() us_regions = litellm.IBMWatsonXAIConfig().get_us_regions() else: eu_regions = [] us_regions = [] for region in eu_regions: if region in model_region.lower(): return "eu" for region in us_regions: if region in model_region.lower(): return "us" return None def _is_region_eu(litellm_params: LiteLLM_Params) -> bool: """ Return true/false if a deployment is in the EU """ if litellm_params.region_name == "eu": return True ## Else - try and infer from model region model_region = _infer_model_region(litellm_params=litellm_params) if model_region is not None and model_region == "eu": return True return False def _is_region_us(litellm_params: LiteLLM_Params) -> bool: """ Return true/false if a deployment is in the US """ if litellm_params.region_name == "us": return True ## Else - try and infer from model region model_region = _infer_model_region(litellm_params=litellm_params) if model_region is not None and model_region == "us": return True return False def is_region_allowed( litellm_params: LiteLLM_Params, allowed_model_region: str ) -> bool: """ Return true/false if a deployment is in the EU """ if litellm_params.region_name == allowed_model_region: return True return False def get_model_region( litellm_params: LiteLLM_Params, mode: Optional[str] ) -> Optional[str]: """ Pass the litellm params for an azure model, and get back the region """ if ( "azure" in litellm_params.model and isinstance(litellm_params.api_key, str) and isinstance(litellm_params.api_base, str) ): _model = litellm_params.model.replace("azure/", "") response: dict = litellm.AzureChatCompletion().get_headers( model=_model, api_key=litellm_params.api_key, api_base=litellm_params.api_base, api_version=litellm_params.api_version or litellm.AZURE_DEFAULT_API_VERSION, timeout=10, mode=mode or "chat", ) region: Optional[str] = response.get("x-ms-region", None) return region return None def get_first_chars_messages(kwargs: dict) -> str: try: _messages = kwargs.get("messages") _messages = str(_messages)[:100] return _messages except Exception: return "" def _count_characters(text: str) -> int: # Remove white spaces and count characters filtered_text = "".join(char for char in text if not char.isspace()) return len(filtered_text) def get_response_string(response_obj: ModelResponse) -> str: _choices: List[Union[Choices, StreamingChoices]] = response_obj.choices response_str = "" for choice in _choices: if isinstance(choice, Choices): if choice.message.content is not None: response_str += choice.message.content elif isinstance(choice, StreamingChoices): if choice.delta.content is not None: response_str += choice.delta.content return response_str def get_api_key(llm_provider: str, dynamic_api_key: Optional[str]): api_key = dynamic_api_key or litellm.api_key # openai if llm_provider == "openai" or llm_provider == "text-completion-openai": api_key = api_key or litellm.openai_key or get_secret("OPENAI_API_KEY") # anthropic elif llm_provider == "anthropic" or llm_provider == "anthropic_text": api_key = api_key or litellm.anthropic_key or get_secret("ANTHROPIC_API_KEY") # ai21 elif llm_provider == "ai21": api_key = api_key or litellm.ai21_key or get_secret("AI211_API_KEY") # aleph_alpha elif llm_provider == "aleph_alpha": api_key = ( api_key or litellm.aleph_alpha_key or get_secret("ALEPH_ALPHA_API_KEY") ) # baseten elif llm_provider == "baseten": api_key = api_key or litellm.baseten_key or get_secret("BASETEN_API_KEY") # cohere elif llm_provider == "cohere" or llm_provider == "cohere_chat": api_key = api_key or litellm.cohere_key or get_secret("COHERE_API_KEY") # huggingface elif llm_provider == "huggingface": api_key = ( api_key or litellm.huggingface_key or get_secret("HUGGINGFACE_API_KEY") ) # nlp_cloud elif llm_provider == "nlp_cloud": api_key = api_key or litellm.nlp_cloud_key or get_secret("NLP_CLOUD_API_KEY") # replicate elif llm_provider == "replicate": api_key = api_key or litellm.replicate_key or get_secret("REPLICATE_API_KEY") # together_ai elif llm_provider == "together_ai": api_key = ( api_key or litellm.togetherai_api_key or get_secret("TOGETHERAI_API_KEY") or get_secret("TOGETHER_AI_TOKEN") ) return api_key def get_utc_datetime(): import datetime as dt from datetime import datetime if hasattr(dt, "UTC"): return datetime.now(dt.UTC) # type: ignore else: return datetime.utcnow() # type: ignore def get_max_tokens(model: str) -> Optional[int]: """ Get the maximum number of output tokens allowed for a given model. Parameters: model (str): The name of the model. Returns: int: The maximum number of tokens allowed for the given model. Raises: Exception: If the model is not mapped yet. Example: >>> get_max_tokens("gpt-4") 8192 """ def _get_max_position_embeddings(model_name): # Construct the URL for the config.json file config_url = f"https://huggingface.co/{model_name}/raw/main/config.json" try: # Make the HTTP request to get the raw JSON file response = litellm.module_level_client.get(config_url) response.raise_for_status() # Raise an exception for bad responses (4xx or 5xx) # Parse the JSON response config_json = response.json() # Extract and return the max_position_embeddings max_position_embeddings = config_json.get("max_position_embeddings") if max_position_embeddings is not None: return max_position_embeddings else: return None except Exception: return None try: if model in litellm.model_cost: if "max_output_tokens" in litellm.model_cost[model]: return litellm.model_cost[model]["max_output_tokens"] elif "max_tokens" in litellm.model_cost[model]: return litellm.model_cost[model]["max_tokens"] model, custom_llm_provider, _, _ = get_llm_provider(model=model) if custom_llm_provider == "huggingface": max_tokens = _get_max_position_embeddings(model_name=model) return max_tokens if model in litellm.model_cost: # check if extracted model is in model_list if "max_output_tokens" in litellm.model_cost[model]: return litellm.model_cost[model]["max_output_tokens"] elif "max_tokens" in litellm.model_cost[model]: return litellm.model_cost[model]["max_tokens"] else: raise Exception() return None except Exception: raise Exception( f"Model {model} isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json" ) def _strip_stable_vertex_version(model_name) -> str: return re.sub(r"-\d+$", "", model_name) def _strip_bedrock_region(model_name) -> str: return litellm.AmazonConverseConfig()._get_base_model(model_name) def _strip_openai_finetune_model_name(model_name: str) -> str: """ Strips the organization, custom suffix, and ID from an OpenAI fine-tuned model name. input: ft:gpt-3.5-turbo:my-org:custom_suffix:id output: ft:gpt-3.5-turbo Args: model_name (str): The full model name Returns: str: The stripped model name """ return re.sub(r"(:[^:]+){3}$", "", model_name) def _strip_model_name(model: str, custom_llm_provider: Optional[str]) -> str: if custom_llm_provider and custom_llm_provider == "bedrock": strip_bedrock_region = _strip_bedrock_region(model_name=model) return strip_bedrock_region elif custom_llm_provider and ( custom_llm_provider == "vertex_ai" or custom_llm_provider == "gemini" ): strip_version = _strip_stable_vertex_version(model_name=model) return strip_version elif custom_llm_provider and (custom_llm_provider == "databricks"): strip_version = _strip_stable_vertex_version(model_name=model) return strip_version elif "ft:" in model: strip_finetune = _strip_openai_finetune_model_name(model_name=model) return strip_finetune else: return model def _get_model_info_from_model_cost(key: str) -> dict: return litellm.model_cost[key] def _check_provider_match(model_info: dict, custom_llm_provider: Optional[str]) -> bool: """ Check if the model info provider matches the custom provider. """ if custom_llm_provider and ( "litellm_provider" in model_info and model_info["litellm_provider"] != custom_llm_provider ): if custom_llm_provider == "vertex_ai" and model_info[ "litellm_provider" ].startswith("vertex_ai"): return True elif custom_llm_provider == "fireworks_ai" and model_info[ "litellm_provider" ].startswith("fireworks_ai"): return True elif custom_llm_provider.startswith("bedrock") and model_info[ "litellm_provider" ].startswith("bedrock"): return True else: return False return True from typing import TypedDict class PotentialModelNamesAndCustomLLMProvider(TypedDict): split_model: str combined_model_name: str stripped_model_name: str combined_stripped_model_name: str custom_llm_provider: str def _get_potential_model_names( model: str, custom_llm_provider: Optional[str] ) -> PotentialModelNamesAndCustomLLMProvider: if custom_llm_provider is None: # Get custom_llm_provider try: split_model, custom_llm_provider, _, _ = get_llm_provider(model=model) except Exception: split_model = model combined_model_name = model stripped_model_name = _strip_model_name( model=model, custom_llm_provider=custom_llm_provider ) combined_stripped_model_name = stripped_model_name elif custom_llm_provider and model.startswith( custom_llm_provider + "/" ): # handle case where custom_llm_provider is provided and model starts with custom_llm_provider split_model = model.split("/", 1)[1] combined_model_name = model stripped_model_name = _strip_model_name( model=split_model, custom_llm_provider=custom_llm_provider ) combined_stripped_model_name = "{}/{}".format( custom_llm_provider, stripped_model_name ) else: split_model = model combined_model_name = "{}/{}".format(custom_llm_provider, model) stripped_model_name = _strip_model_name( model=model, custom_llm_provider=custom_llm_provider ) combined_stripped_model_name = "{}/{}".format( custom_llm_provider, stripped_model_name, ) return PotentialModelNamesAndCustomLLMProvider( split_model=split_model, combined_model_name=combined_model_name, stripped_model_name=stripped_model_name, combined_stripped_model_name=combined_stripped_model_name, custom_llm_provider=cast(str, custom_llm_provider), ) def _get_max_position_embeddings(model_name: str) -> Optional[int]: # Construct the URL for the config.json file config_url = f"https://huggingface.co/{model_name}/raw/main/config.json" try: # Make the HTTP request to get the raw JSON file response = litellm.module_level_client.get(config_url) response.raise_for_status() # Raise an exception for bad responses (4xx or 5xx) # Parse the JSON response config_json = response.json() # Extract and return the max_position_embeddings max_position_embeddings = config_json.get("max_position_embeddings") if max_position_embeddings is not None: return max_position_embeddings else: return None except Exception: return None @lru_cache_wrapper(maxsize=16) def _cached_get_model_info_helper( model: str, custom_llm_provider: Optional[str] ) -> ModelInfoBase: """ _get_model_info_helper wrapped with lru_cache Speed Optimization to hit high RPS """ return _get_model_info_helper(model=model, custom_llm_provider=custom_llm_provider) def get_provider_info( model: str, custom_llm_provider: Optional[str] ) -> Optional[ProviderSpecificModelInfo]: ## PROVIDER-SPECIFIC INFORMATION # if custom_llm_provider == "predibase": # _model_info["supports_response_schema"] = True provider_config: Optional[BaseLLMModelInfo] = None if custom_llm_provider and custom_llm_provider in LlmProvidersSet: # Check if the provider string exists in LlmProviders enum provider_config = ProviderConfigManager.get_provider_model_info( model=model, provider=LlmProviders(custom_llm_provider) ) model_info: Optional[ProviderSpecificModelInfo] = None if provider_config: model_info = provider_config.get_provider_info(model=model) return model_info def _get_model_info_helper( # noqa: PLR0915 model: str, custom_llm_provider: Optional[str] = None ) -> ModelInfoBase: """ Helper for 'get_model_info'. Separated out to avoid infinite loop caused by returning 'supported_openai_param's """ try: azure_llms = {**litellm.azure_llms, **litellm.azure_embedding_models} if model in azure_llms: model = azure_llms[model] if custom_llm_provider is not None and custom_llm_provider == "vertex_ai_beta": custom_llm_provider = "vertex_ai" if custom_llm_provider is not None and custom_llm_provider == "vertex_ai": if "meta/" + model in litellm.vertex_llama3_models: model = "meta/" + model elif model + "@latest" in litellm.vertex_mistral_models: model = model + "@latest" elif model + "@latest" in litellm.vertex_ai_ai21_models: model = model + "@latest" ########################## potential_model_names = _get_potential_model_names( model=model, custom_llm_provider=custom_llm_provider ) verbose_logger.debug( f"checking potential_model_names in litellm.model_cost: {potential_model_names}" ) combined_model_name = potential_model_names["combined_model_name"] stripped_model_name = potential_model_names["stripped_model_name"] combined_stripped_model_name = potential_model_names[ "combined_stripped_model_name" ] split_model = potential_model_names["split_model"] custom_llm_provider = potential_model_names["custom_llm_provider"] ######################### if custom_llm_provider == "huggingface": max_tokens = _get_max_position_embeddings(model_name=model) return ModelInfoBase( key=model, max_tokens=max_tokens, # type: ignore max_input_tokens=None, max_output_tokens=None, input_cost_per_token=0, output_cost_per_token=0, litellm_provider="huggingface", mode="chat", supports_system_messages=None, supports_response_schema=None, supports_function_calling=None, supports_tool_choice=None, supports_assistant_prefill=None, supports_prompt_caching=None, supports_pdf_input=None, ) elif custom_llm_provider == "ollama" or custom_llm_provider == "ollama_chat": return litellm.OllamaConfig().get_model_info(model) else: """ Check if: (in order of specificity) 1. 'custom_llm_provider/model' in litellm.model_cost. Checks "groq/llama3-8b-8192" if model="llama3-8b-8192" and custom_llm_provider="groq" 2. 'model' in litellm.model_cost. Checks "gemini-1.5-pro-002" in litellm.model_cost if model="gemini-1.5-pro-002" and custom_llm_provider=None 3. 'combined_stripped_model_name' in litellm.model_cost. Checks if 'gemini/gemini-1.5-flash' in model map, if 'gemini/gemini-1.5-flash-001' given. 4. 'stripped_model_name' in litellm.model_cost. Checks if 'ft:gpt-3.5-turbo' in model map, if 'ft:gpt-3.5-turbo:my-org:custom_suffix:id' given. 5. 'split_model' in litellm.model_cost. Checks "llama3-8b-8192" in litellm.model_cost if model="groq/llama3-8b-8192" """ _model_info: Optional[Dict[str, Any]] = None key: Optional[str] = None if combined_model_name in litellm.model_cost: key = combined_model_name _model_info = _get_model_info_from_model_cost(key=key) if not _check_provider_match( model_info=_model_info, custom_llm_provider=custom_llm_provider ): _model_info = None if _model_info is None and model in litellm.model_cost: key = model _model_info = _get_model_info_from_model_cost(key=key) if not _check_provider_match( model_info=_model_info, custom_llm_provider=custom_llm_provider ): _model_info = None if ( _model_info is None and combined_stripped_model_name in litellm.model_cost ): key = combined_stripped_model_name _model_info = _get_model_info_from_model_cost(key=key) if not _check_provider_match( model_info=_model_info, custom_llm_provider=custom_llm_provider ): _model_info = None if _model_info is None and stripped_model_name in litellm.model_cost: key = stripped_model_name _model_info = _get_model_info_from_model_cost(key=key) if not _check_provider_match( model_info=_model_info, custom_llm_provider=custom_llm_provider ): _model_info = None if _model_info is None and split_model in litellm.model_cost: key = split_model _model_info = _get_model_info_from_model_cost(key=key) if not _check_provider_match( model_info=_model_info, custom_llm_provider=custom_llm_provider ): _model_info = None if _model_info is None or key is None: raise ValueError( "This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json" ) _input_cost_per_token: Optional[float] = _model_info.get( "input_cost_per_token" ) if _input_cost_per_token is None: # default value to 0, be noisy about this verbose_logger.debug( "model={}, custom_llm_provider={} has no input_cost_per_token in model_cost_map. Defaulting to 0.".format( model, custom_llm_provider ) ) _input_cost_per_token = 0 _output_cost_per_token: Optional[float] = _model_info.get( "output_cost_per_token" ) if _output_cost_per_token is None: # default value to 0, be noisy about this verbose_logger.debug( "model={}, custom_llm_provider={} has no output_cost_per_token in model_cost_map. Defaulting to 0.".format( model, custom_llm_provider ) ) _output_cost_per_token = 0 return ModelInfoBase( key=key, max_tokens=_model_info.get("max_tokens", None), max_input_tokens=_model_info.get("max_input_tokens", None), max_output_tokens=_model_info.get("max_output_tokens", None), input_cost_per_token=_input_cost_per_token, cache_creation_input_token_cost=_model_info.get( "cache_creation_input_token_cost", None ), cache_read_input_token_cost=_model_info.get( "cache_read_input_token_cost", None ), input_cost_per_character=_model_info.get( "input_cost_per_character", None ), input_cost_per_token_above_128k_tokens=_model_info.get( "input_cost_per_token_above_128k_tokens", None ), input_cost_per_query=_model_info.get("input_cost_per_query", None), input_cost_per_second=_model_info.get("input_cost_per_second", None), input_cost_per_audio_token=_model_info.get( "input_cost_per_audio_token", None ), output_cost_per_token=_output_cost_per_token, output_cost_per_audio_token=_model_info.get( "output_cost_per_audio_token", None ), output_cost_per_character=_model_info.get( "output_cost_per_character", None ), output_cost_per_token_above_128k_tokens=_model_info.get( "output_cost_per_token_above_128k_tokens", None ), output_cost_per_character_above_128k_tokens=_model_info.get( "output_cost_per_character_above_128k_tokens", None ), output_cost_per_second=_model_info.get("output_cost_per_second", None), output_cost_per_image=_model_info.get("output_cost_per_image", None), output_vector_size=_model_info.get("output_vector_size", None), litellm_provider=_model_info.get( "litellm_provider", custom_llm_provider ), mode=_model_info.get("mode"), # type: ignore supports_system_messages=_model_info.get( "supports_system_messages", None ), supports_response_schema=_model_info.get( "supports_response_schema", None ), supports_vision=_model_info.get("supports_vision", False), supports_function_calling=_model_info.get( "supports_function_calling", False ), supports_tool_choice=_model_info.get("supports_tool_choice", False), supports_assistant_prefill=_model_info.get( "supports_assistant_prefill", False ), supports_prompt_caching=_model_info.get( "supports_prompt_caching", False ), supports_audio_input=_model_info.get("supports_audio_input", False), supports_audio_output=_model_info.get("supports_audio_output", False), supports_pdf_input=_model_info.get("supports_pdf_input", False), supports_embedding_image_input=_model_info.get( "supports_embedding_image_input", False ), supports_native_streaming=_model_info.get( "supports_native_streaming", None ), tpm=_model_info.get("tpm", None), rpm=_model_info.get("rpm", None), ) except Exception as e: verbose_logger.debug(f"Error getting model info: {e}") if "OllamaError" in str(e): raise e raise Exception( "This model isn't mapped yet. model={}, custom_llm_provider={}. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json.".format( model, custom_llm_provider ) ) def get_model_info(model: str, custom_llm_provider: Optional[str] = None) -> ModelInfo: """ Get a dict for the maximum tokens (context window), input_cost_per_token, output_cost_per_token for a given model. Parameters: - model (str): The name of the model. - custom_llm_provider (str | null): the provider used for the model. If provided, used to check if the litellm model info is for that provider. Returns: dict: A dictionary containing the following information: key: Required[str] # the key in litellm.model_cost which is returned max_tokens: Required[Optional[int]] max_input_tokens: Required[Optional[int]] max_output_tokens: Required[Optional[int]] input_cost_per_token: Required[float] input_cost_per_character: Optional[float] # only for vertex ai models input_cost_per_token_above_128k_tokens: Optional[float] # only for vertex ai models input_cost_per_character_above_128k_tokens: Optional[ float ] # only for vertex ai models input_cost_per_query: Optional[float] # only for rerank models input_cost_per_image: Optional[float] # only for vertex ai models input_cost_per_audio_token: Optional[float] input_cost_per_audio_per_second: Optional[float] # only for vertex ai models input_cost_per_video_per_second: Optional[float] # only for vertex ai models output_cost_per_token: Required[float] output_cost_per_audio_token: Optional[float] output_cost_per_character: Optional[float] # only for vertex ai models output_cost_per_token_above_128k_tokens: Optional[ float ] # only for vertex ai models output_cost_per_character_above_128k_tokens: Optional[ float ] # only for vertex ai models output_cost_per_image: Optional[float] output_vector_size: Optional[int] output_cost_per_video_per_second: Optional[float] # only for vertex ai models output_cost_per_audio_per_second: Optional[float] # only for vertex ai models litellm_provider: Required[str] mode: Required[ Literal[ "completion", "embedding", "image_generation", "chat", "audio_transcription" ] ] supported_openai_params: Required[Optional[List[str]]] supports_system_messages: Optional[bool] supports_response_schema: Optional[bool] supports_vision: Optional[bool] supports_function_calling: Optional[bool] supports_tool_choice: Optional[bool] supports_prompt_caching: Optional[bool] supports_audio_input: Optional[bool] supports_audio_output: Optional[bool] supports_pdf_input: Optional[bool] Raises: Exception: If the model is not mapped yet. Example: >>> get_model_info("gpt-4") { "max_tokens": 8192, "input_cost_per_token": 0.00003, "output_cost_per_token": 0.00006, "litellm_provider": "openai", "mode": "chat", "supported_openai_params": ["temperature", "max_tokens", "top_p", "frequency_penalty", "presence_penalty"] } """ supported_openai_params = litellm.get_supported_openai_params( model=model, custom_llm_provider=custom_llm_provider ) _model_info = _get_model_info_helper( model=model, custom_llm_provider=custom_llm_provider, ) verbose_logger.debug(f"model_info: {_model_info}") returned_model_info = ModelInfo( **_model_info, supported_openai_params=supported_openai_params ) return returned_model_info def json_schema_type(python_type_name: str): """Converts standard python types to json schema types Parameters ---------- python_type_name : str __name__ of type Returns ------- str a standard JSON schema type, "string" if not recognized. """ python_to_json_schema_types = { str.__name__: "string", int.__name__: "integer", float.__name__: "number", bool.__name__: "boolean", list.__name__: "array", dict.__name__: "object", "NoneType": "null", } return python_to_json_schema_types.get(python_type_name, "string") def function_to_dict(input_function): # noqa: C901 """Using type hints and numpy-styled docstring, produce a dictionnary usable for OpenAI function calling Parameters ---------- input_function : function A function with a numpy-style docstring Returns ------- dictionnary A dictionnary to add to the list passed to `functions` parameter of `litellm.completion` """ # Get function name and docstring try: import inspect from ast import literal_eval from numpydoc.docscrape import NumpyDocString except Exception as e: raise e name = input_function.__name__ docstring = inspect.getdoc(input_function) numpydoc = NumpyDocString(docstring) description = "\n".join([s.strip() for s in numpydoc["Summary"]]) # Get function parameters and their types from annotations and docstring parameters = {} required_params = [] param_info = inspect.signature(input_function).parameters for param_name, param in param_info.items(): if hasattr(param, "annotation"): param_type = json_schema_type(param.annotation.__name__) else: param_type = None param_description = None param_enum = None # Try to extract param description from docstring using numpydoc for param_data in numpydoc["Parameters"]: if param_data.name == param_name: if hasattr(param_data, "type"): # replace type from docstring rather than annotation param_type = param_data.type if "optional" in param_type: param_type = param_type.split(",")[0] elif "{" in param_type: # may represent a set of acceptable values # translating as enum for function calling try: param_enum = str(list(literal_eval(param_type))) param_type = "string" except Exception: pass param_type = json_schema_type(param_type) param_description = "\n".join([s.strip() for s in param_data.desc]) param_dict = { "type": param_type, "description": param_description, "enum": param_enum, } parameters[param_name] = dict( [(k, v) for k, v in param_dict.items() if isinstance(v, str)] ) # Check if the parameter has no default value (i.e., it's required) if param.default == param.empty: required_params.append(param_name) # Create the dictionary result = { "name": name, "description": description, "parameters": { "type": "object", "properties": parameters, }, } # Add "required" key if there are required parameters if required_params: result["parameters"]["required"] = required_params return result def modify_url(original_url, new_path): url = httpx.URL(original_url) modified_url = url.copy_with(path=new_path) return str(modified_url) def load_test_model( model: str, custom_llm_provider: str = "", api_base: str = "", prompt: str = "", num_calls: int = 0, force_timeout: int = 0, ): test_prompt = "Hey, how's it going" test_calls = 100 if prompt: test_prompt = prompt if num_calls: test_calls = num_calls messages = [[{"role": "user", "content": test_prompt}] for _ in range(test_calls)] start_time = time.time() try: litellm.batch_completion( model=model, messages=messages, custom_llm_provider=custom_llm_provider, api_base=api_base, force_timeout=force_timeout, ) end_time = time.time() response_time = end_time - start_time return { "total_response_time": response_time, "calls_made": 100, "status": "success", "exception": None, } except Exception as e: end_time = time.time() response_time = end_time - start_time return { "total_response_time": response_time, "calls_made": 100, "status": "failed", "exception": e, } def get_provider_fields(custom_llm_provider: str) -> List[ProviderField]: """Return the fields required for each provider""" if custom_llm_provider == "databricks": return litellm.DatabricksConfig().get_required_params() elif custom_llm_provider == "ollama": return litellm.OllamaConfig().get_required_params() elif custom_llm_provider == "azure_ai": return litellm.AzureAIStudioConfig().get_required_params() else: return [] def create_proxy_transport_and_mounts(): proxies = { key: None if url is None else Proxy(url=url) for key, url in get_environment_proxies().items() } sync_proxy_mounts = {} async_proxy_mounts = {} # Retrieve NO_PROXY environment variable no_proxy = os.getenv("NO_PROXY", None) no_proxy_urls = no_proxy.split(",") if no_proxy else [] for key, proxy in proxies.items(): if proxy is None: sync_proxy_mounts[key] = httpx.HTTPTransport() async_proxy_mounts[key] = httpx.AsyncHTTPTransport() else: sync_proxy_mounts[key] = httpx.HTTPTransport(proxy=proxy) async_proxy_mounts[key] = httpx.AsyncHTTPTransport(proxy=proxy) for url in no_proxy_urls: sync_proxy_mounts[url] = httpx.HTTPTransport() async_proxy_mounts[url] = httpx.AsyncHTTPTransport() return sync_proxy_mounts, async_proxy_mounts def validate_environment( # noqa: PLR0915 model: Optional[str] = None, api_key: Optional[str] = None, api_base: Optional[str] = None, ) -> dict: """ Checks if the environment variables are valid for the given model. Args: model (Optional[str]): The name of the model. Defaults to None. api_key (Optional[str]): If the user passed in an api key, of their own. Returns: dict: A dictionary containing the following keys: - keys_in_environment (bool): True if all the required keys are present in the environment, False otherwise. - missing_keys (List[str]): A list of missing keys in the environment. """ keys_in_environment = False missing_keys: List[str] = [] if model is None: return { "keys_in_environment": keys_in_environment, "missing_keys": missing_keys, } ## EXTRACT LLM PROVIDER - if model name provided try: _, custom_llm_provider, _, _ = get_llm_provider(model=model) except Exception: custom_llm_provider = None if custom_llm_provider: if custom_llm_provider == "openai": if "OPENAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("OPENAI_API_KEY") elif custom_llm_provider == "azure": if ( "AZURE_API_BASE" in os.environ and "AZURE_API_VERSION" in os.environ and "AZURE_API_KEY" in os.environ ): keys_in_environment = True else: missing_keys.extend( ["AZURE_API_BASE", "AZURE_API_VERSION", "AZURE_API_KEY"] ) elif custom_llm_provider == "anthropic": if "ANTHROPIC_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ANTHROPIC_API_KEY") elif custom_llm_provider == "cohere": if "COHERE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("COHERE_API_KEY") elif custom_llm_provider == "replicate": if "REPLICATE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("REPLICATE_API_KEY") elif custom_llm_provider == "openrouter": if "OPENROUTER_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("OPENROUTER_API_KEY") elif custom_llm_provider == "vertex_ai": if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ: keys_in_environment = True else: missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_LOCATION"]) elif custom_llm_provider == "huggingface": if "HUGGINGFACE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("HUGGINGFACE_API_KEY") elif custom_llm_provider == "ai21": if "AI21_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("AI21_API_KEY") elif custom_llm_provider == "together_ai": if "TOGETHERAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("TOGETHERAI_API_KEY") elif custom_llm_provider == "aleph_alpha": if "ALEPH_ALPHA_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ALEPH_ALPHA_API_KEY") elif custom_llm_provider == "baseten": if "BASETEN_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("BASETEN_API_KEY") elif custom_llm_provider == "nlp_cloud": if "NLP_CLOUD_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("NLP_CLOUD_API_KEY") elif custom_llm_provider == "bedrock" or custom_llm_provider == "sagemaker": if ( "AWS_ACCESS_KEY_ID" in os.environ and "AWS_SECRET_ACCESS_KEY" in os.environ ): keys_in_environment = True else: missing_keys.append("AWS_ACCESS_KEY_ID") missing_keys.append("AWS_SECRET_ACCESS_KEY") elif custom_llm_provider in ["ollama", "ollama_chat"]: if "OLLAMA_API_BASE" in os.environ: keys_in_environment = True else: missing_keys.append("OLLAMA_API_BASE") elif custom_llm_provider == "anyscale": if "ANYSCALE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ANYSCALE_API_KEY") elif custom_llm_provider == "deepinfra": if "DEEPINFRA_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("DEEPINFRA_API_KEY") elif custom_llm_provider == "gemini": if "GEMINI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("GEMINI_API_KEY") elif custom_llm_provider == "groq": if "GROQ_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("GROQ_API_KEY") elif custom_llm_provider == "nvidia_nim": if "NVIDIA_NIM_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("NVIDIA_NIM_API_KEY") elif custom_llm_provider == "cerebras": if "CEREBRAS_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("CEREBRAS_API_KEY") elif custom_llm_provider == "xai": if "XAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("XAI_API_KEY") elif custom_llm_provider == "ai21_chat": if "AI21_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("AI21_API_KEY") elif custom_llm_provider == "volcengine": if "VOLCENGINE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("VOLCENGINE_API_KEY") elif ( custom_llm_provider == "codestral" or custom_llm_provider == "text-completion-codestral" ): if "CODESTRAL_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("CODESTRAL_API_KEY") elif custom_llm_provider == "deepseek": if "DEEPSEEK_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("DEEPSEEK_API_KEY") elif custom_llm_provider == "mistral": if "MISTRAL_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("MISTRAL_API_KEY") elif custom_llm_provider == "palm": if "PALM_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("PALM_API_KEY") elif custom_llm_provider == "perplexity": if "PERPLEXITYAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("PERPLEXITYAI_API_KEY") elif custom_llm_provider == "voyage": if "VOYAGE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("VOYAGE_API_KEY") elif custom_llm_provider == "fireworks_ai": if ( "FIREWORKS_AI_API_KEY" in os.environ or "FIREWORKS_API_KEY" in os.environ or "FIREWORKSAI_API_KEY" in os.environ or "FIREWORKS_AI_TOKEN" in os.environ ): keys_in_environment = True else: missing_keys.append("FIREWORKS_AI_API_KEY") elif custom_llm_provider == "cloudflare": if "CLOUDFLARE_API_KEY" in os.environ and ( "CLOUDFLARE_ACCOUNT_ID" in os.environ or "CLOUDFLARE_API_BASE" in os.environ ): keys_in_environment = True else: missing_keys.append("CLOUDFLARE_API_KEY") missing_keys.append("CLOUDFLARE_API_BASE") else: ## openai - chatcompletion + text completion if ( model in litellm.open_ai_chat_completion_models or model in litellm.open_ai_text_completion_models or model in litellm.open_ai_embedding_models or model in litellm.openai_image_generation_models ): if "OPENAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("OPENAI_API_KEY") ## anthropic elif model in litellm.anthropic_models: if "ANTHROPIC_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ANTHROPIC_API_KEY") ## cohere elif model in litellm.cohere_models: if "COHERE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("COHERE_API_KEY") ## replicate elif model in litellm.replicate_models: if "REPLICATE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("REPLICATE_API_KEY") ## openrouter elif model in litellm.openrouter_models: if "OPENROUTER_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("OPENROUTER_API_KEY") ## vertex - text + chat models elif ( model in litellm.vertex_chat_models or model in litellm.vertex_text_models or model in litellm.models_by_provider["vertex_ai"] ): if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ: keys_in_environment = True else: missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_LOCATION"]) ## huggingface elif model in litellm.huggingface_models: if "HUGGINGFACE_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("HUGGINGFACE_API_KEY") ## ai21 elif model in litellm.ai21_models: if "AI21_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("AI21_API_KEY") ## together_ai elif model in litellm.together_ai_models: if "TOGETHERAI_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("TOGETHERAI_API_KEY") ## aleph_alpha elif model in litellm.aleph_alpha_models: if "ALEPH_ALPHA_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("ALEPH_ALPHA_API_KEY") ## baseten elif model in litellm.baseten_models: if "BASETEN_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("BASETEN_API_KEY") ## nlp_cloud elif model in litellm.nlp_cloud_models: if "NLP_CLOUD_API_KEY" in os.environ: keys_in_environment = True else: missing_keys.append("NLP_CLOUD_API_KEY") if api_key is not None: new_missing_keys = [] for key in missing_keys: if "api_key" not in key.lower(): new_missing_keys.append(key) missing_keys = new_missing_keys if api_base is not None: new_missing_keys = [] for key in missing_keys: if "api_base" not in key.lower(): new_missing_keys.append(key) missing_keys = new_missing_keys if len(missing_keys) == 0: # no missing keys keys_in_environment = True return {"keys_in_environment": keys_in_environment, "missing_keys": missing_keys} def acreate(*args, **kwargs): ## Thin client to handle the acreate langchain call return litellm.acompletion(*args, **kwargs) def prompt_token_calculator(model, messages): # use tiktoken or anthropic's tokenizer depending on the model text = " ".join(message["content"] for message in messages) num_tokens = 0 if "claude" in model: try: import anthropic except Exception: Exception("Anthropic import failed please run `pip install anthropic`") from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic anthropic_obj = Anthropic() num_tokens = anthropic_obj.count_tokens(text) else: num_tokens = len(encoding.encode(text)) return num_tokens def valid_model(model): try: # for a given model name, check if the user has the right permissions to access the model if ( model in litellm.open_ai_chat_completion_models or model in litellm.open_ai_text_completion_models ): openai.models.retrieve(model) else: messages = [{"role": "user", "content": "Hello World"}] litellm.completion(model=model, messages=messages) except Exception: raise BadRequestError(message="", model=model, llm_provider="") def check_valid_key(model: str, api_key: str): """ Checks if a given API key is valid for a specific model by making a litellm.completion call with max_tokens=10 Args: model (str): The name of the model to check the API key against. api_key (str): The API key to be checked. Returns: bool: True if the API key is valid for the model, False otherwise. """ messages = [{"role": "user", "content": "Hey, how's it going?"}] try: litellm.completion( model=model, messages=messages, api_key=api_key, max_tokens=10 ) return True except AuthenticationError: return False except Exception: return False def _should_retry(status_code: int): """ Retries on 408, 409, 429 and 500 errors. Any client error in the 400-499 range that isn't explicitly handled (such as 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found, etc.) would not trigger a retry. Reimplementation of openai's should retry logic, since that one can't be imported. https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L639 """ # If the server explicitly says whether or not to retry, obey. # Retry on request timeouts. if status_code == 408: return True # Retry on lock timeouts. if status_code == 409: return True # Retry on rate limits. if status_code == 429: return True # Retry internal errors. if status_code >= 500: return True return False def _get_retry_after_from_exception_header( response_headers: Optional[httpx.Headers] = None, ): """ Reimplementation of openai's calculate retry after, since that one can't be imported. https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L631 """ try: import email # openai import # About the Retry-After header: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After # # ". See https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After#syntax for # details. if response_headers is not None: retry_header = response_headers.get("retry-after") try: retry_after = int(retry_header) except Exception: retry_date_tuple = email.utils.parsedate_tz(retry_header) # type: ignore if retry_date_tuple is None: retry_after = -1 else: retry_date = email.utils.mktime_tz(retry_date_tuple) # type: ignore retry_after = int(retry_date - time.time()) else: retry_after = -1 return retry_after except Exception: retry_after = -1 def _calculate_retry_after( remaining_retries: int, max_retries: int, response_headers: Optional[httpx.Headers] = None, min_timeout: int = 0, ) -> Union[float, int]: retry_after = _get_retry_after_from_exception_header(response_headers) # If the API asks us to wait a certain amount of time (and it's a reasonable amount), just do what it says. if retry_after is not None and 0 < retry_after <= 60: return retry_after initial_retry_delay = 0.5 max_retry_delay = 8.0 nb_retries = max_retries - remaining_retries # Apply exponential backoff, but not more than the max. sleep_seconds = min(initial_retry_delay * pow(2.0, nb_retries), max_retry_delay) # Apply some jitter, plus-or-minus half a second. jitter = 1 - 0.25 * random.random() timeout = sleep_seconds * jitter return timeout if timeout >= min_timeout else min_timeout # custom prompt helper function def register_prompt_template( model: str, roles: dict, initial_prompt_value: str = "", final_prompt_value: str = "", ): """ Register a prompt template to follow your custom format for a given model Args: model (str): The name of the model. roles (dict): A dictionary mapping roles to their respective prompt values. initial_prompt_value (str, optional): The initial prompt value. Defaults to "". final_prompt_value (str, optional): The final prompt value. Defaults to "". Returns: dict: The updated custom prompt dictionary. Example usage: ``` import litellm litellm.register_prompt_template( model="llama-2", initial_prompt_value="You are a good assistant" # [OPTIONAL] roles={ "system": { "pre_message": "[INST] <>\n", # [OPTIONAL] "post_message": "\n<>\n [/INST]\n" # [OPTIONAL] }, "user": { "pre_message": "[INST] ", # [OPTIONAL] "post_message": " [/INST]" # [OPTIONAL] }, "assistant": { "pre_message": "\n" # [OPTIONAL] "post_message": "\n" # [OPTIONAL] } } final_prompt_value="Now answer as best you can:" # [OPTIONAL] ) ``` """ model = get_llm_provider(model=model)[0] litellm.custom_prompt_dict[model] = { "roles": roles, "initial_prompt_value": initial_prompt_value, "final_prompt_value": final_prompt_value, } return litellm.custom_prompt_dict class TextCompletionStreamWrapper: def __init__( self, completion_stream, model, stream_options: Optional[dict] = None, custom_llm_provider: Optional[str] = None, ): self.completion_stream = completion_stream self.model = model self.stream_options = stream_options self.custom_llm_provider = custom_llm_provider def __iter__(self): return self def __aiter__(self): return self def convert_to_text_completion_object(self, chunk: ModelResponse): try: response = TextCompletionResponse() response["id"] = chunk.get("id", None) response["object"] = "text_completion" response["created"] = chunk.get("created", None) response["model"] = chunk.get("model", None) text_choices = TextChoices() if isinstance( chunk, Choices ): # chunk should always be of type StreamingChoices raise Exception text_choices["text"] = chunk["choices"][0]["delta"]["content"] text_choices["index"] = chunk["choices"][0]["index"] text_choices["finish_reason"] = chunk["choices"][0]["finish_reason"] response["choices"] = [text_choices] # only pass usage when stream_options["include_usage"] is True if ( self.stream_options and self.stream_options.get("include_usage", False) is True ): response["usage"] = chunk.get("usage", None) return response except Exception as e: raise Exception( f"Error occurred converting to text completion object - chunk: {chunk}; Error: {str(e)}" ) def __next__(self): # model_response = ModelResponse(stream=True, model=self.model) TextCompletionResponse() try: for chunk in self.completion_stream: if chunk == "None" or chunk is None: raise Exception processed_chunk = self.convert_to_text_completion_object(chunk=chunk) return processed_chunk raise StopIteration except StopIteration: raise StopIteration except Exception as e: raise exception_type( model=self.model, custom_llm_provider=self.custom_llm_provider or "", original_exception=e, completion_kwargs={}, extra_kwargs={}, ) async def __anext__(self): try: async for chunk in self.completion_stream: if chunk == "None" or chunk is None: raise Exception processed_chunk = self.convert_to_text_completion_object(chunk=chunk) return processed_chunk raise StopIteration except StopIteration: raise StopAsyncIteration def mock_completion_streaming_obj( model_response, mock_response, model, n: Optional[int] = None ): if isinstance(mock_response, litellm.MockException): raise mock_response for i in range(0, len(mock_response), 3): completion_obj = Delta(role="assistant", content=mock_response[i : i + 3]) if n is None: model_response.choices[0].delta = completion_obj else: _all_choices = [] for j in range(n): _streaming_choice = litellm.utils.StreamingChoices( index=j, delta=litellm.utils.Delta( role="assistant", content=mock_response[i : i + 3] ), ) _all_choices.append(_streaming_choice) model_response.choices = _all_choices yield model_response async def async_mock_completion_streaming_obj( model_response, mock_response, model, n: Optional[int] = None ): if isinstance(mock_response, litellm.MockException): raise mock_response for i in range(0, len(mock_response), 3): completion_obj = Delta(role="assistant", content=mock_response[i : i + 3]) if n is None: model_response.choices[0].delta = completion_obj else: _all_choices = [] for j in range(n): _streaming_choice = litellm.utils.StreamingChoices( index=j, delta=litellm.utils.Delta( role="assistant", content=mock_response[i : i + 3] ), ) _all_choices.append(_streaming_choice) model_response.choices = _all_choices yield model_response ########## Reading Config File ############################ def read_config_args(config_path) -> dict: try: import os os.getcwd() with open(config_path, "r") as config_file: config = json.load(config_file) # read keys/ values from config file and return them return config except Exception as e: raise e ########## experimental completion variants ############################ def process_system_message(system_message, max_tokens, model): system_message_event = {"role": "system", "content": system_message} system_message_tokens = get_token_count([system_message_event], model) if system_message_tokens > max_tokens: print_verbose( "`tokentrimmer`: Warning, system message exceeds token limit. Trimming..." ) # shorten system message to fit within max_tokens new_system_message = shorten_message_to_fit_limit( system_message_event, max_tokens, model ) system_message_tokens = get_token_count([new_system_message], model) return system_message_event, max_tokens - system_message_tokens def process_messages(messages, max_tokens, model): # Process messages from older to more recent messages = messages[::-1] final_messages = [] for message in messages: used_tokens = get_token_count(final_messages, model) available_tokens = max_tokens - used_tokens if available_tokens <= 3: break final_messages = attempt_message_addition( final_messages=final_messages, message=message, available_tokens=available_tokens, max_tokens=max_tokens, model=model, ) return final_messages def attempt_message_addition( final_messages, message, available_tokens, max_tokens, model ): temp_messages = [message] + final_messages temp_message_tokens = get_token_count(messages=temp_messages, model=model) if temp_message_tokens <= max_tokens: return temp_messages # if temp_message_tokens > max_tokens, try shortening temp_messages elif "function_call" not in message: # fit updated_message to be within temp_message_tokens - max_tokens (aka the amount temp_message_tokens is greate than max_tokens) updated_message = shorten_message_to_fit_limit(message, available_tokens, model) if can_add_message(updated_message, final_messages, max_tokens, model): return [updated_message] + final_messages return final_messages def can_add_message(message, messages, max_tokens, model): if get_token_count(messages + [message], model) <= max_tokens: return True return False def get_token_count(messages, model): return token_counter(model=model, messages=messages) def shorten_message_to_fit_limit(message, tokens_needed, model: Optional[str]): """ Shorten a message to fit within a token limit by removing characters from the middle. """ # For OpenAI models, even blank messages cost 7 token, # and if the buffer is less than 3, the while loop will never end, # hence the value 10. if model is not None and "gpt" in model and tokens_needed <= 10: return message content = message["content"] while True: total_tokens = get_token_count([message], model) if total_tokens <= tokens_needed: break ratio = (tokens_needed) / total_tokens new_length = int(len(content) * ratio) - 1 new_length = max(0, new_length) half_length = new_length // 2 left_half = content[:half_length] right_half = content[-half_length:] trimmed_content = left_half + ".." + right_half message["content"] = trimmed_content content = trimmed_content return message # LiteLLM token trimmer # this code is borrowed from https://github.com/KillianLucas/tokentrim/blob/main/tokentrim/tokentrim.py # Credits for this code go to Killian Lucas def trim_messages( messages, model: Optional[str] = None, trim_ratio: float = 0.75, return_response_tokens: bool = False, max_tokens=None, ): """ Trim a list of messages to fit within a model's token limit. Args: messages: Input messages to be trimmed. Each message is a dictionary with 'role' and 'content'. model: The LiteLLM model being used (determines the token limit). trim_ratio: Target ratio of tokens to use after trimming. Default is 0.75, meaning it will trim messages so they use about 75% of the model's token limit. return_response_tokens: If True, also return the number of tokens left available for the response after trimming. max_tokens: Instead of specifying a model or trim_ratio, you can specify this directly. Returns: Trimmed messages and optionally the number of tokens available for response. """ # Initialize max_tokens # if users pass in max tokens, trim to this amount messages = copy.deepcopy(messages) try: if max_tokens is None: # Check if model is valid if model in litellm.model_cost: max_tokens_for_model = litellm.model_cost[model].get( "max_input_tokens", litellm.model_cost[model]["max_tokens"] ) max_tokens = int(max_tokens_for_model * trim_ratio) else: # if user did not specify max (input) tokens # or passed an llm litellm does not know # do nothing, just return messages return messages system_message = "" for message in messages: if message["role"] == "system": system_message += "\n" if system_message else "" system_message += message["content"] ## Handle Tool Call ## - check if last message is a tool response, return as is - https://github.com/BerriAI/litellm/issues/4931 tool_messages = [] for message in reversed(messages): if message["role"] != "tool": break tool_messages.append(message) # # Remove the collected tool messages from the original list if len(tool_messages): messages = messages[: -len(tool_messages)] current_tokens = token_counter(model=model or "", messages=messages) print_verbose(f"Current tokens: {current_tokens}, max tokens: {max_tokens}") # Do nothing if current tokens under messages if current_tokens < max_tokens: return messages #### Trimming messages if current_tokens > max_tokens print_verbose( f"Need to trim input messages: {messages}, current_tokens{current_tokens}, max_tokens: {max_tokens}" ) system_message_event: Optional[dict] = None if system_message: system_message_event, max_tokens = process_system_message( system_message=system_message, max_tokens=max_tokens, model=model ) if max_tokens == 0: # the system messages are too long return [system_message_event] # Since all system messages are combined and trimmed to fit the max_tokens, # we remove all system messages from the messages list messages = [message for message in messages if message["role"] != "system"] final_messages = process_messages( messages=messages, max_tokens=max_tokens, model=model ) # Add system message to the beginning of the final messages if system_message_event: final_messages = [system_message_event] + final_messages if len(tool_messages) > 0: final_messages.extend(tool_messages) if ( return_response_tokens ): # if user wants token count with new trimmed messages response_tokens = max_tokens - get_token_count(final_messages, model) return final_messages, response_tokens return final_messages except Exception as e: # [NON-Blocking, if error occurs just return final_messages verbose_logger.exception( "Got exception while token trimming - {}".format(str(e)) ) return messages def get_valid_models(check_provider_endpoint: bool = False) -> List[str]: """ Returns a list of valid LLMs based on the set environment variables Args: check_provider_endpoint: If True, will check the provider's endpoint for valid models. Returns: A list of valid LLMs """ try: # get keys set in .env environ_keys = os.environ.keys() valid_providers = [] # for all valid providers, make a list of supported llms valid_models = [] for provider in litellm.provider_list: # edge case litellm has together_ai as a provider, it should be togetherai env_provider_1 = provider.replace("_", "") env_provider_2 = provider # litellm standardizes expected provider keys to # PROVIDER_API_KEY. Example: OPENAI_API_KEY, COHERE_API_KEY expected_provider_key_1 = f"{env_provider_1.upper()}_API_KEY" expected_provider_key_2 = f"{env_provider_2.upper()}_API_KEY" if ( expected_provider_key_1 in environ_keys or expected_provider_key_2 in environ_keys ): # key is set valid_providers.append(provider) for provider in valid_providers: provider_config = ProviderConfigManager.get_provider_model_info( model=None, provider=LlmProviders(provider), ) if provider == "azure": valid_models.append("Azure-LLM") elif provider_config is not None and check_provider_endpoint: valid_models.extend(provider_config.get_models()) else: models_for_provider = litellm.models_by_provider.get(provider, []) valid_models.extend(models_for_provider) return valid_models except Exception as e: verbose_logger.debug(f"Error getting valid models: {e}") return [] # NON-Blocking def print_args_passed_to_litellm(original_function, args, kwargs): if not _is_debugging_on(): return try: # we've already printed this for acompletion, don't print for completion if ( "acompletion" in kwargs and kwargs["acompletion"] is True and original_function.__name__ == "completion" ): return elif ( "aembedding" in kwargs and kwargs["aembedding"] is True and original_function.__name__ == "embedding" ): return elif ( "aimg_generation" in kwargs and kwargs["aimg_generation"] is True and original_function.__name__ == "img_generation" ): return args_str = ", ".join(map(repr, args)) kwargs_str = ", ".join(f"{key}={repr(value)}" for key, value in kwargs.items()) print_verbose( "\n", ) # new line before print_verbose( "\033[92mRequest to litellm:\033[0m", ) if args and kwargs: print_verbose( f"\033[92mlitellm.{original_function.__name__}({args_str}, {kwargs_str})\033[0m" ) elif args: print_verbose( f"\033[92mlitellm.{original_function.__name__}({args_str})\033[0m" ) elif kwargs: print_verbose( f"\033[92mlitellm.{original_function.__name__}({kwargs_str})\033[0m" ) else: print_verbose(f"\033[92mlitellm.{original_function.__name__}()\033[0m") print_verbose("\n") # new line after except Exception: # This should always be non blocking pass def get_logging_id(start_time, response_obj): try: response_id = ( "time-" + start_time.strftime("%H-%M-%S-%f") + "_" + response_obj.get("id") ) return response_id except Exception: return None def _get_base_model_from_metadata(model_call_details=None): if model_call_details is None: return None litellm_params = model_call_details.get("litellm_params", {}) if litellm_params is not None: _base_model = litellm_params.get("base_model", None) if _base_model is not None: return _base_model metadata = litellm_params.get("metadata", {}) return _get_base_model_from_litellm_call_metadata(metadata=metadata) return None class ModelResponseIterator: def __init__(self, model_response: ModelResponse, convert_to_delta: bool = False): if convert_to_delta is True: self.model_response = ModelResponse(stream=True) _delta = self.model_response.choices[0].delta # type: ignore _delta.content = model_response.choices[0].message.content # type: ignore else: self.model_response = model_response self.is_done = False # Sync iterator def __iter__(self): return self def __next__(self): if self.is_done: raise StopIteration self.is_done = True return self.model_response # Async iterator def __aiter__(self): return self async def __anext__(self): if self.is_done: raise StopAsyncIteration self.is_done = True return self.model_response class ModelResponseListIterator: def __init__(self, model_responses): self.model_responses = model_responses self.index = 0 # Sync iterator def __iter__(self): return self def __next__(self): if self.index >= len(self.model_responses): raise StopIteration model_response = self.model_responses[self.index] self.index += 1 return model_response # Async iterator def __aiter__(self): return self async def __anext__(self): if self.index >= len(self.model_responses): raise StopAsyncIteration model_response = self.model_responses[self.index] self.index += 1 return model_response class CustomModelResponseIterator(Iterable): def __init__(self) -> None: super().__init__() def is_cached_message(message: AllMessageValues) -> bool: """ Returns true, if message is marked as needing to be cached. Used for anthropic/gemini context caching. Follows the anthropic format {"cache_control": {"type": "ephemeral"}} """ if "content" not in message: return False if message["content"] is None or isinstance(message["content"], str): return False for content in message["content"]: if ( content["type"] == "text" and content.get("cache_control") is not None and content["cache_control"]["type"] == "ephemeral" # type: ignore ): return True return False def is_base64_encoded(s: str) -> bool: try: # Strip out the prefix if it exists if not s.startswith( "data:" ): # require `data:` for base64 str, like openai. Prevents false positives like s='Dog' return False s = s.split(",")[1] # Try to decode the string decoded_bytes = base64.b64decode(s, validate=True) # Check if the original string can be re-encoded to the same string return base64.b64encode(decoded_bytes).decode("utf-8") == s except Exception: return False def get_base64_str(s: str) -> str: """ s: b64str OR  """ if "," in s: return s.split(",")[1] return s def has_tool_call_blocks(messages: List[AllMessageValues]) -> bool: """ Returns true, if messages has tool call blocks. Used for anthropic/bedrock message validation. """ for message in messages: if message.get("tool_calls") is not None: return True return False def add_dummy_tool(custom_llm_provider: str) -> List[ChatCompletionToolParam]: """ Prevent Anthropic from raising error when tool_use block exists but no tools are provided. Relevent Issues: https://github.com/BerriAI/litellm/issues/5388, https://github.com/BerriAI/litellm/issues/5747 """ return [ ChatCompletionToolParam( type="function", function=ChatCompletionToolParamFunctionChunk( name="dummy_tool", description="This is a dummy tool call", # provided to satisfy bedrock constraint. parameters={ "type": "object", "properties": {}, }, ), ) ] from litellm.types.llms.openai import ( ChatCompletionAudioObject, ChatCompletionImageObject, ChatCompletionTextObject, ChatCompletionUserMessage, OpenAIMessageContent, ValidUserMessageContentTypes, ) def convert_to_dict(message: Union[BaseModel, dict]) -> dict: """ Converts a message to a dictionary if it's a Pydantic model. Args: message: The message, which may be a Pydantic model or a dictionary. Returns: dict: The converted message. """ if isinstance(message, BaseModel): return message.model_dump(exclude_none=True) elif isinstance(message, dict): return message else: raise TypeError( f"Invalid message type: {type(message)}. Expected dict or Pydantic model." ) def validate_chat_completion_messages(messages: List[AllMessageValues]): """ Ensures all messages are valid OpenAI chat completion messages. """ # 1. convert all messages to dict messages = [ cast(AllMessageValues, convert_to_dict(cast(dict, m))) for m in messages ] # 2. validate user messages return validate_chat_completion_user_messages(messages=messages) def validate_chat_completion_user_messages(messages: List[AllMessageValues]): """ Ensures all user messages are valid OpenAI chat completion messages. Args: messages: List of message dictionaries message_content_type: Type to validate content against Returns: List[dict]: The validated messages Raises: ValueError: If any message is invalid """ for idx, m in enumerate(messages): try: if m["role"] == "user": user_content = m.get("content") if user_content is not None: if isinstance(user_content, str): continue elif isinstance(user_content, list): for item in user_content: if isinstance(item, dict): if item.get("type") not in ValidUserMessageContentTypes: raise Exception("invalid content type") except Exception as e: if "invalid content type" in str(e): raise Exception( f"Invalid user message={m} at index {idx}. Please ensure all user messages are valid OpenAI chat completion messages." ) else: raise e return messages def validate_chat_completion_tool_choice( tool_choice: Optional[Union[dict, str]] ) -> Optional[Union[dict, str]]: """ Confirm the tool choice is passed in the OpenAI format. Prevents user errors like: https://github.com/BerriAI/litellm/issues/7483 """ from litellm.types.llms.openai import ( ChatCompletionToolChoiceObjectParam, ChatCompletionToolChoiceStringValues, ) if tool_choice is None: return tool_choice elif isinstance(tool_choice, str): return tool_choice elif isinstance(tool_choice, dict): if tool_choice.get("type") is None or tool_choice.get("function") is None: raise Exception( f"Invalid tool choice, tool_choice={tool_choice}. Please ensure tool_choice follows the OpenAI spec" ) return tool_choice raise Exception( f"Invalid tool choice, tool_choice={tool_choice}. Got={type(tool_choice)}. Expecting str, or dict. Please ensure tool_choice follows the OpenAI tool_choice spec" ) class ProviderConfigManager: @staticmethod def get_provider_chat_config( # noqa: PLR0915 model: str, provider: LlmProviders ) -> BaseConfig: """ Returns the provider config for a given provider. """ if ( provider == LlmProviders.OPENAI and litellm.openaiOSeriesConfig.is_model_o_series_model(model=model) ): return litellm.openaiOSeriesConfig elif litellm.LlmProviders.DEEPSEEK == provider: return litellm.DeepSeekChatConfig() elif litellm.LlmProviders.GROQ == provider: return litellm.GroqChatConfig() elif litellm.LlmProviders.DATABRICKS == provider: return litellm.DatabricksConfig() elif litellm.LlmProviders.XAI == provider: return litellm.XAIChatConfig() elif litellm.LlmProviders.TEXT_COMPLETION_OPENAI == provider: return litellm.OpenAITextCompletionConfig() elif litellm.LlmProviders.COHERE_CHAT == provider: return litellm.CohereChatConfig() elif litellm.LlmProviders.COHERE == provider: return litellm.CohereConfig() elif litellm.LlmProviders.CLARIFAI == provider: return litellm.ClarifaiConfig() elif litellm.LlmProviders.ANTHROPIC == provider: return litellm.AnthropicConfig() elif litellm.LlmProviders.ANTHROPIC_TEXT == provider: return litellm.AnthropicTextConfig() elif litellm.LlmProviders.VERTEX_AI == provider: if "claude" in model: return litellm.VertexAIAnthropicConfig() elif litellm.LlmProviders.CLOUDFLARE == provider: return litellm.CloudflareChatConfig() elif litellm.LlmProviders.SAGEMAKER_CHAT == provider: return litellm.SagemakerChatConfig() elif litellm.LlmProviders.SAGEMAKER == provider: return litellm.SagemakerConfig() elif litellm.LlmProviders.FIREWORKS_AI == provider: return litellm.FireworksAIConfig() elif litellm.LlmProviders.FRIENDLIAI == provider: return litellm.FriendliaiChatConfig() elif litellm.LlmProviders.WATSONX == provider: return litellm.IBMWatsonXChatConfig() elif litellm.LlmProviders.WATSONX_TEXT == provider: return litellm.IBMWatsonXAIConfig() elif litellm.LlmProviders.EMPOWER == provider: return litellm.EmpowerChatConfig() elif litellm.LlmProviders.GITHUB == provider: return litellm.GithubChatConfig() elif ( litellm.LlmProviders.CUSTOM == provider or litellm.LlmProviders.CUSTOM_OPENAI == provider or litellm.LlmProviders.OPENAI_LIKE == provider or litellm.LlmProviders.LITELLM_PROXY == provider ): return litellm.OpenAILikeChatConfig() elif litellm.LlmProviders.AIOHTTP_OPENAI == provider: return litellm.AiohttpOpenAIChatConfig() elif litellm.LlmProviders.HOSTED_VLLM == provider: return litellm.HostedVLLMChatConfig() elif litellm.LlmProviders.LM_STUDIO == provider: return litellm.LMStudioChatConfig() elif litellm.LlmProviders.GALADRIEL == provider: return litellm.GaladrielChatConfig() elif litellm.LlmProviders.REPLICATE == provider: return litellm.ReplicateConfig() elif litellm.LlmProviders.HUGGINGFACE == provider: return litellm.HuggingfaceConfig() elif litellm.LlmProviders.TOGETHER_AI == provider: return litellm.TogetherAIConfig() elif litellm.LlmProviders.OPENROUTER == provider: return litellm.OpenrouterConfig() elif litellm.LlmProviders.GEMINI == provider: return litellm.GoogleAIStudioGeminiConfig() elif ( litellm.LlmProviders.AI21 == provider or litellm.LlmProviders.AI21_CHAT == provider ): return litellm.AI21ChatConfig() elif litellm.LlmProviders.AZURE == provider: if litellm.AzureOpenAIO1Config().is_o_series_model(model=model): return litellm.AzureOpenAIO1Config() return litellm.AzureOpenAIConfig() elif litellm.LlmProviders.AZURE_AI == provider: return litellm.AzureAIStudioConfig() elif litellm.LlmProviders.AZURE_TEXT == provider: return litellm.AzureOpenAITextConfig() elif litellm.LlmProviders.HOSTED_VLLM == provider: return litellm.HostedVLLMChatConfig() elif litellm.LlmProviders.NLP_CLOUD == provider: return litellm.NLPCloudConfig() elif litellm.LlmProviders.OOBABOOGA == provider: return litellm.OobaboogaConfig() elif litellm.LlmProviders.OLLAMA_CHAT == provider: return litellm.OllamaChatConfig() elif litellm.LlmProviders.DEEPINFRA == provider: return litellm.DeepInfraConfig() elif litellm.LlmProviders.PERPLEXITY == provider: return litellm.PerplexityChatConfig() elif ( litellm.LlmProviders.MISTRAL == provider or litellm.LlmProviders.CODESTRAL == provider ): return litellm.MistralConfig() elif litellm.LlmProviders.NVIDIA_NIM == provider: return litellm.NvidiaNimConfig() elif litellm.LlmProviders.CEREBRAS == provider: return litellm.CerebrasConfig() elif litellm.LlmProviders.VOLCENGINE == provider: return litellm.VolcEngineConfig() elif litellm.LlmProviders.TEXT_COMPLETION_CODESTRAL == provider: return litellm.CodestralTextCompletionConfig() elif litellm.LlmProviders.SAMBANOVA == provider: return litellm.SambanovaConfig() elif litellm.LlmProviders.MARITALK == provider: return litellm.MaritalkConfig() elif litellm.LlmProviders.CLOUDFLARE == provider: return litellm.CloudflareChatConfig() elif litellm.LlmProviders.ANTHROPIC_TEXT == provider: return litellm.AnthropicTextConfig() elif litellm.LlmProviders.VLLM == provider: return litellm.VLLMConfig() elif litellm.LlmProviders.OLLAMA == provider: return litellm.OllamaConfig() elif litellm.LlmProviders.PREDIBASE == provider: return litellm.PredibaseConfig() elif litellm.LlmProviders.TRITON == provider: return litellm.TritonConfig() elif litellm.LlmProviders.PETALS == provider: return litellm.PetalsConfig() elif litellm.LlmProviders.BEDROCK == provider: base_model = litellm.AmazonConverseConfig()._get_base_model(model) bedrock_provider = litellm.BedrockLLM.get_bedrock_invoke_provider(model) if ( base_model in litellm.bedrock_converse_models or "converse_like" in model ): return litellm.AmazonConverseConfig() elif bedrock_provider == "amazon": # amazon titan llms return litellm.AmazonTitanConfig() elif ( bedrock_provider == "meta" or bedrock_provider == "llama" ): # amazon / meta llms return litellm.AmazonLlamaConfig() elif bedrock_provider == "ai21": # ai21 llms return litellm.AmazonAI21Config() elif bedrock_provider == "cohere": # cohere models on bedrock return litellm.AmazonCohereConfig() elif bedrock_provider == "mistral": # mistral models on bedrock return litellm.AmazonMistralConfig() return litellm.OpenAIGPTConfig() @staticmethod def get_provider_embedding_config( model: str, provider: LlmProviders, ) -> BaseEmbeddingConfig: if litellm.LlmProviders.VOYAGE == provider: return litellm.VoyageEmbeddingConfig() elif litellm.LlmProviders.TRITON == provider: return litellm.TritonEmbeddingConfig() elif litellm.LlmProviders.WATSONX == provider: return litellm.IBMWatsonXEmbeddingConfig() raise ValueError(f"Provider {provider.value} does not support embedding config") @staticmethod def get_provider_rerank_config( model: str, provider: LlmProviders, ) -> BaseRerankConfig: if litellm.LlmProviders.COHERE == provider: return litellm.CohereRerankConfig() elif litellm.LlmProviders.AZURE_AI == provider: return litellm.AzureAIRerankConfig() elif litellm.LlmProviders.INFINITY == provider: return litellm.InfinityRerankConfig() return litellm.CohereRerankConfig() @staticmethod def get_provider_audio_transcription_config( model: str, provider: LlmProviders, ) -> Optional[BaseAudioTranscriptionConfig]: if litellm.LlmProviders.FIREWORKS_AI == provider: return litellm.FireworksAIAudioTranscriptionConfig() elif litellm.LlmProviders.DEEPGRAM == provider: return litellm.DeepgramAudioTranscriptionConfig() return None @staticmethod def get_provider_text_completion_config( model: str, provider: LlmProviders, ) -> BaseTextCompletionConfig: if LlmProviders.FIREWORKS_AI == provider: return litellm.FireworksAITextCompletionConfig() elif LlmProviders.TOGETHER_AI == provider: return litellm.TogetherAITextCompletionConfig() return litellm.OpenAITextCompletionConfig() @staticmethod def get_provider_model_info( model: Optional[str], provider: LlmProviders, ) -> Optional[BaseLLMModelInfo]: if LlmProviders.FIREWORKS_AI == provider: return litellm.FireworksAIConfig() elif LlmProviders.OPENAI == provider: return litellm.OpenAIGPTConfig() elif LlmProviders.LITELLM_PROXY == provider: return litellm.LiteLLMProxyChatConfig() elif LlmProviders.TOPAZ == provider: return litellm.TopazModelInfo() return None @staticmethod def get_provider_image_variation_config( model: str, provider: LlmProviders, ) -> Optional[BaseImageVariationConfig]: if LlmProviders.OPENAI == provider: return litellm.OpenAIImageVariationConfig() elif LlmProviders.TOPAZ == provider: return litellm.TopazImageVariationConfig() return None def get_end_user_id_for_cost_tracking( litellm_params: dict, service_type: Literal["litellm_logging", "prometheus"] = "litellm_logging", ) -> Optional[str]: """ Used for enforcing `disable_end_user_cost_tracking` param. service_type: "litellm_logging" or "prometheus" - used to allow prometheus only disable cost tracking. """ _metadata = cast(dict, litellm_params.get("metadata", {}) or {}) end_user_id = cast( Optional[str], litellm_params.get("user_api_key_end_user_id") or _metadata.get("user_api_key_end_user_id"), ) if litellm.disable_end_user_cost_tracking: return None if ( service_type == "prometheus" and litellm.disable_end_user_cost_tracking_prometheus_only ): return None return end_user_id def is_prompt_caching_valid_prompt( model: str, messages: Optional[List[AllMessageValues]], tools: Optional[List[ChatCompletionToolParam]] = None, custom_llm_provider: Optional[str] = None, ) -> bool: """ Returns true if the prompt is valid for prompt caching. OpenAI + Anthropic providers have a minimum token count of 1024 for prompt caching. """ try: if messages is None and tools is None: return False if custom_llm_provider is not None and not model.startswith( custom_llm_provider ): model = custom_llm_provider + "/" + model token_count = token_counter( messages=messages, tools=tools, model=model, use_default_image_token_count=True, ) return token_count >= 1024 except Exception as e: verbose_logger.error(f"Error in is_prompt_caching_valid_prompt: {e}") return False def extract_duration_from_srt_or_vtt(srt_or_vtt_content: str) -> Optional[float]: """ Extracts the total duration (in seconds) from SRT or VTT content. Args: srt_or_vtt_content (str): The content of an SRT or VTT file as a string. Returns: Optional[float]: The total duration in seconds, or None if no timestamps are found. """ # Regular expression to match timestamps in the format "hh:mm:ss,ms" or "hh:mm:ss.ms" timestamp_pattern = r"(\d{2}):(\d{2}):(\d{2})[.,](\d{3})" timestamps = re.findall(timestamp_pattern, srt_or_vtt_content) if not timestamps: return None # Convert timestamps to seconds and find the max (end time) durations = [] for match in timestamps: hours, minutes, seconds, milliseconds = map(int, match) total_seconds = hours * 3600 + minutes * 60 + seconds + milliseconds / 1000.0 durations.append(total_seconds) return max(durations) if durations else None import httpx def _add_path_to_api_base(api_base: str, ending_path: str) -> str: """ Adds an ending path to an API base URL while preventing duplicate path segments. Args: api_base: Base URL string ending_path: Path to append to the base URL Returns: Modified URL string with proper path handling """ original_url = httpx.URL(api_base) base_url = original_url.copy_with(params={}) # Removes query params base_path = original_url.path.rstrip("/") end_path = ending_path.lstrip("/") # Split paths into segments base_segments = [s for s in base_path.split("/") if s] end_segments = [s for s in end_path.split("/") if s] # Find overlapping segments from the end of base_path and start of ending_path final_segments = [] for i in range(len(base_segments)): if base_segments[i:] == end_segments[: len(base_segments) - i]: final_segments = base_segments[:i] + end_segments break else: # No overlap found, just combine all segments final_segments = base_segments + end_segments # Construct the new path modified_path = "/" + "/".join(final_segments) modified_url = base_url.copy_with(path=modified_path) # Re-add the original query parameters return str(modified_url.copy_with(params=original_url.params)) def get_non_default_completion_params(kwargs: dict) -> dict: openai_params = litellm.OPENAI_CHAT_COMPLETION_PARAMS default_params = openai_params + all_litellm_params non_default_params = { k: v for k, v in kwargs.items() if k not in default_params } # model-specific params - pass them straight to the model/provider return non_default_params def add_openai_metadata(metadata: dict) -> dict: """ Add metadata to openai optional parameters, excluding hidden params Args: params (dict): Dictionary of API parameters metadata (dict, optional): Metadata to include in the request Returns: dict: Updated parameters dictionary with visible metadata only """ if metadata is None: return None # Only include non-hidden parameters visible_metadata = {k: v for k, v in metadata.items() if k != "hidden_params"} return visible_metadata.copy()