"""Abstraction function for OpenAI's realtime API""" from typing import Any, Optional import litellm from litellm import get_llm_provider from litellm.secret_managers.main import get_secret_str from litellm.types.router import GenericLiteLLMParams from ..litellm_core_utils.litellm_logging import Logging as LiteLLMLogging from ..llms.azure.realtime.handler import AzureOpenAIRealtime from ..llms.openai.realtime.handler import OpenAIRealtime from ..utils import client as wrapper_client azure_realtime = AzureOpenAIRealtime() openai_realtime = OpenAIRealtime() @wrapper_client async def _arealtime( model: str, websocket: Any, # fastapi websocket api_base: Optional[str] = None, api_key: Optional[str] = None, api_version: Optional[str] = None, azure_ad_token: Optional[str] = None, client: Optional[Any] = None, timeout: Optional[float] = None, **kwargs, ): """ Private function to handle the realtime API call. For PROXY use only. """ litellm_logging_obj: LiteLLMLogging = kwargs.get("litellm_logging_obj") # type: ignore litellm_call_id: Optional[str] = kwargs.get("litellm_call_id", None) proxy_server_request = kwargs.get("proxy_server_request", None) model_info = kwargs.get("model_info", None) metadata = kwargs.get("metadata", {}) user = kwargs.get("user", None) litellm_params = GenericLiteLLMParams(**kwargs) model, _custom_llm_provider, dynamic_api_key, dynamic_api_base = get_llm_provider( model=model, api_base=api_base, api_key=api_key, ) litellm_logging_obj.update_environment_variables( model=model, user=user, optional_params={}, litellm_params={ "litellm_call_id": litellm_call_id, "proxy_server_request": proxy_server_request, "model_info": model_info, "metadata": metadata, "preset_cache_key": None, "stream_response": {}, }, custom_llm_provider=_custom_llm_provider, ) if _custom_llm_provider == "azure": api_base = ( dynamic_api_base or litellm_params.api_base or litellm.api_base or get_secret_str("AZURE_API_BASE") ) # set API KEY api_key = ( dynamic_api_key or litellm.api_key or litellm.openai_key or get_secret_str("AZURE_API_KEY") ) await azure_realtime.async_realtime( model=model, websocket=websocket, api_base=api_base, api_key=api_key, api_version="2024-10-01-preview", azure_ad_token=None, client=None, timeout=timeout, logging_obj=litellm_logging_obj, ) elif _custom_llm_provider == "openai": api_base = ( dynamic_api_base or litellm_params.api_base or litellm.api_base or "https://api.openai.com/" ) # set API KEY api_key = ( dynamic_api_key or litellm.api_key or litellm.openai_key or get_secret_str("OPENAI_API_KEY") ) await openai_realtime.async_realtime( model=model, websocket=websocket, logging_obj=litellm_logging_obj, api_base=api_base, api_key=api_key, client=None, timeout=timeout, ) else: raise ValueError(f"Unsupported model: {model}") async def _realtime_health_check( model: str, custom_llm_provider: str, api_key: Optional[str], api_base: Optional[str] = None, api_version: Optional[str] = None, ): """ Health check for realtime API - tries connection to the realtime API websocket Args: model: str - model name api_base: str - api base api_version: Optional[str] - api version api_key: str - api key custom_llm_provider: str - custom llm provider Returns: bool - True if connection is successful, False otherwise Raises: Exception - if the connection is not successful """ import websockets url: Optional[str] = None if custom_llm_provider == "azure": url = azure_realtime._construct_url( api_base=api_base or "", model=model, api_version=api_version or "2024-10-01-preview", ) elif custom_llm_provider == "openai": url = openai_realtime._construct_url( api_base=api_base or "https://api.openai.com/", model=model ) async with websockets.connect( # type: ignore url, extra_headers={ "api-key": api_key, # type: ignore }, ): return True