import asyncio import copy import inspect import io import os import random import secrets import subprocess import sys import time import traceback import uuid import warnings from datetime import datetime, timedelta from typing import ( TYPE_CHECKING, Any, List, Optional, Tuple, cast, get_args, get_origin, get_type_hints, ) if TYPE_CHECKING: from opentelemetry.trace import Span as _Span Span = _Span else: Span = Any def showwarning(message, category, filename, lineno, file=None, line=None): traceback_info = f"{filename}:{lineno}: {category.__name__}: {message}\n" if file is not None: file.write(traceback_info) warnings.showwarning = showwarning warnings.filterwarnings("default", category=UserWarning) # Your client code here messages: list = [] sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path - for litellm local dev try: import logging import backoff import fastapi import orjson import yaml # type: ignore from apscheduler.schedulers.asyncio import AsyncIOScheduler except ImportError as e: raise ImportError(f"Missing dependency {e}. Run `pip install 'litellm[proxy]'`") list_of_messages = [ "'The thing I wish you improved is...'", "'A feature I really want is...'", "'The worst thing about this product is...'", "'This product would be better if...'", "'I don't like how this works...'", "'It would help me if you could add...'", "'This feature doesn't meet my needs because...'", "'I get frustrated when the product...'", ] def generate_feedback_box(): box_width = 60 # Select a random message message = random.choice(list_of_messages) print() # noqa print("\033[1;37m" + "#" + "-" * box_width + "#\033[0m") # noqa print("\033[1;37m" + "#" + " " * box_width + "#\033[0m") # noqa print("\033[1;37m" + "# {:^59} #\033[0m".format(message)) # noqa print( # noqa "\033[1;37m" + "# {:^59} #\033[0m".format("https://github.com/BerriAI/litellm/issues/new") ) # noqa print("\033[1;37m" + "#" + " " * box_width + "#\033[0m") # noqa print("\033[1;37m" + "#" + "-" * box_width + "#\033[0m") # noqa print() # noqa print(" Thank you for using LiteLLM! - Krrish & Ishaan") # noqa print() # noqa print() # noqa print() # noqa print( # noqa "\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m" ) # noqa print() # noqa print() # noqa from collections import defaultdict from contextlib import asynccontextmanager import litellm from litellm import Router from litellm._logging import verbose_proxy_logger, verbose_router_logger from litellm.caching.caching import DualCache, RedisCache from litellm.exceptions import RejectedRequestError from litellm.integrations.SlackAlerting.slack_alerting import SlackAlerting from litellm.litellm_core_utils.core_helpers import ( _get_parent_otel_span_from_kwargs, get_litellm_metadata_from_kwargs, ) from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler from litellm.proxy._types import * from litellm.proxy.analytics_endpoints.analytics_endpoints import ( router as analytics_router, ) from litellm.proxy.auth.auth_checks import log_db_metrics from litellm.proxy.auth.auth_utils import check_response_size_is_safe from litellm.proxy.auth.handle_jwt import JWTHandler from litellm.proxy.auth.litellm_license import LicenseCheck from litellm.proxy.auth.model_checks import ( get_complete_model_list, get_key_models, get_team_models, ) from litellm.proxy.auth.user_api_key_auth import ( user_api_key_auth, user_api_key_auth_websocket, ) from litellm.proxy.batches_endpoints.endpoints import router as batches_router ## Import All Misc routes here ## from litellm.proxy.caching_routes import router as caching_router from litellm.proxy.common_utils.admin_ui_utils import html_form from litellm.proxy.common_utils.callback_utils import ( get_logging_caching_headers, get_remaining_tokens_and_requests_from_request_data, initialize_callbacks_on_proxy, ) from litellm.proxy.common_utils.debug_utils import init_verbose_loggers from litellm.proxy.common_utils.debug_utils import router as debugging_endpoints_router from litellm.proxy.common_utils.encrypt_decrypt_utils import ( decrypt_value_helper, encrypt_value_helper, ) from litellm.proxy.common_utils.http_parsing_utils import ( _read_request_body, check_file_size_under_limit, ) from litellm.proxy.common_utils.load_config_utils import ( get_config_file_contents_from_gcs, get_file_contents_from_s3, ) from litellm.proxy.common_utils.openai_endpoint_utils import ( remove_sensitive_info_from_deployment, ) from litellm.proxy.common_utils.proxy_state import ProxyState from litellm.proxy.common_utils.swagger_utils import ERROR_RESPONSES from litellm.proxy.fine_tuning_endpoints.endpoints import router as fine_tuning_router from litellm.proxy.fine_tuning_endpoints.endpoints import set_fine_tuning_config from litellm.proxy.guardrails.guardrail_endpoints import router as guardrails_router from litellm.proxy.guardrails.init_guardrails import ( init_guardrails_v2, initialize_guardrails, ) from litellm.proxy.health_check import perform_health_check from litellm.proxy.health_endpoints._health_endpoints import router as health_router from litellm.proxy.hooks.model_max_budget_limiter import ( _PROXY_VirtualKeyModelMaxBudgetLimiter, ) from litellm.proxy.hooks.prompt_injection_detection import ( _OPTIONAL_PromptInjectionDetection, ) from litellm.proxy.hooks.proxy_failure_handler import _PROXY_failure_handler from litellm.proxy.hooks.proxy_track_cost_callback import _PROXY_track_cost_callback from litellm.proxy.litellm_pre_call_utils import add_litellm_data_to_request from litellm.proxy.management_endpoints.budget_management_endpoints import ( router as budget_management_router, ) from litellm.proxy.management_endpoints.customer_endpoints import ( router as customer_router, ) from litellm.proxy.management_endpoints.internal_user_endpoints import ( router as internal_user_router, ) from litellm.proxy.management_endpoints.internal_user_endpoints import user_update from litellm.proxy.management_endpoints.key_management_endpoints import ( delete_verification_tokens, duration_in_seconds, generate_key_helper_fn, ) from litellm.proxy.management_endpoints.key_management_endpoints import ( router as key_management_router, ) from litellm.proxy.management_endpoints.organization_endpoints import ( router as organization_router, ) from litellm.proxy.management_endpoints.team_callback_endpoints import ( router as team_callback_router, ) from litellm.proxy.management_endpoints.team_endpoints import router as team_router from litellm.proxy.management_endpoints.team_endpoints import update_team from litellm.proxy.management_endpoints.ui_sso import ( get_disabled_non_admin_personal_key_creation, ) from litellm.proxy.management_endpoints.ui_sso import router as ui_sso_router from litellm.proxy.management_helpers.audit_logs import create_audit_log_for_update from litellm.proxy.openai_files_endpoints.files_endpoints import ( router as openai_files_router, ) from litellm.proxy.openai_files_endpoints.files_endpoints import set_files_config from litellm.proxy.pass_through_endpoints.llm_passthrough_endpoints import ( router as llm_passthrough_router, ) from litellm.proxy.pass_through_endpoints.pass_through_endpoints import ( initialize_pass_through_endpoints, ) from litellm.proxy.pass_through_endpoints.pass_through_endpoints import ( router as pass_through_router, ) from litellm.proxy.rerank_endpoints.endpoints import router as rerank_router from litellm.proxy.route_llm_request import route_request from litellm.proxy.spend_tracking.spend_management_endpoints import ( router as spend_management_router, ) from litellm.proxy.spend_tracking.spend_tracking_utils import get_logging_payload from litellm.proxy.ui_crud_endpoints.proxy_setting_endpoints import ( router as ui_crud_endpoints_router, ) from litellm.proxy.utils import ( PrismaClient, ProxyLogging, _cache_user_row, _get_docs_url, _get_projected_spend_over_limit, _get_redoc_url, _is_projected_spend_over_limit, _is_valid_team_configs, get_error_message_str, get_instance_fn, hash_token, reset_budget, update_spend, ) from litellm.proxy.vertex_ai_endpoints.langfuse_endpoints import ( router as langfuse_router, ) from litellm.proxy.vertex_ai_endpoints.vertex_endpoints import router as vertex_router from litellm.proxy.vertex_ai_endpoints.vertex_endpoints import set_default_vertex_config from litellm.router import ( AssistantsTypedDict, Deployment, LiteLLM_Params, ModelGroupInfo, ) from litellm.scheduler import DefaultPriorities, FlowItem, Scheduler from litellm.secret_managers.aws_secret_manager import load_aws_kms from litellm.secret_managers.google_kms import load_google_kms from litellm.secret_managers.main import ( get_secret, get_secret_bool, get_secret_str, str_to_bool, ) from litellm.types.integrations.slack_alerting import SlackAlertingArgs from litellm.types.llms.anthropic import ( AnthropicMessagesRequest, AnthropicResponse, AnthropicResponseContentBlockText, AnthropicResponseUsageBlock, ) from litellm.types.llms.openai import HttpxBinaryResponseContent from litellm.types.router import DeploymentTypedDict from litellm.types.router import ModelInfo as RouterModelInfo from litellm.types.router import RouterGeneralSettings, updateDeployment from litellm.types.utils import CustomHuggingfaceTokenizer from litellm.types.utils import ModelInfo as ModelMapInfo from litellm.types.utils import StandardLoggingPayload from litellm.utils import _add_custom_logger_callback_to_specific_event try: from litellm._version import version except Exception: version = "0.0.0" litellm.suppress_debug_info = True import json from typing import Union from fastapi import ( Depends, FastAPI, File, Form, Header, HTTPException, Path, Query, Request, Response, UploadFile, status, ) from fastapi.encoders import jsonable_encoder from fastapi.middleware.cors import CORSMiddleware from fastapi.openapi.utils import get_openapi from fastapi.responses import ( FileResponse, JSONResponse, ORJSONResponse, RedirectResponse, StreamingResponse, ) from fastapi.routing import APIRouter from fastapi.security import OAuth2PasswordBearer from fastapi.security.api_key import APIKeyHeader from fastapi.staticfiles import StaticFiles # import enterprise folder try: # when using litellm cli import litellm.proxy.enterprise as enterprise except Exception: # when using litellm docker image try: import enterprise # type: ignore except Exception: pass server_root_path = os.getenv("SERVER_ROOT_PATH", "") _license_check = LicenseCheck() premium_user: bool = _license_check.is_premium() global_max_parallel_request_retries_env: Optional[str] = os.getenv( "LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRIES" ) proxy_state = ProxyState() if global_max_parallel_request_retries_env is None: global_max_parallel_request_retries: int = 3 else: global_max_parallel_request_retries = int(global_max_parallel_request_retries_env) global_max_parallel_request_retry_timeout_env: Optional[str] = os.getenv( "LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRY_TIMEOUT" ) if global_max_parallel_request_retry_timeout_env is None: global_max_parallel_request_retry_timeout: float = 60.0 else: global_max_parallel_request_retry_timeout = float( global_max_parallel_request_retry_timeout_env ) ui_link = f"{server_root_path}/ui/" ui_message = ( f"šŸ‘‰ [```LiteLLM Admin Panel on /ui```]({ui_link}). Create, Edit Keys with SSO" ) ui_message += "\n\nšŸ’ø [```LiteLLM Model Cost Map```](https://models.litellm.ai/)." custom_swagger_message = "[**Customize Swagger Docs**](https://docs.litellm.ai/docs/proxy/enterprise#swagger-docs---custom-routes--branding)" ### CUSTOM BRANDING [ENTERPRISE FEATURE] ### _title = os.getenv("DOCS_TITLE", "LiteLLM API") if premium_user else "LiteLLM API" _description = ( os.getenv( "DOCS_DESCRIPTION", f"Enterprise Edition \n\nProxy Server to call 100+ LLMs in the OpenAI format. {custom_swagger_message}\n\n{ui_message}", ) if premium_user else f"Proxy Server to call 100+ LLMs in the OpenAI format. {custom_swagger_message}\n\n{ui_message}" ) def cleanup_router_config_variables(): global master_key, user_config_file_path, otel_logging, user_custom_auth, user_custom_auth_path, user_custom_key_generate, user_custom_sso, use_background_health_checks, health_check_interval, prisma_client # Set all variables to None master_key = None user_config_file_path = None otel_logging = None user_custom_auth = None user_custom_auth_path = None user_custom_key_generate = None user_custom_sso = None use_background_health_checks = None health_check_interval = None prisma_client = None async def proxy_shutdown_event(): global prisma_client, master_key, user_custom_auth, user_custom_key_generate verbose_proxy_logger.info("Shutting down LiteLLM Proxy Server") if prisma_client: verbose_proxy_logger.debug("Disconnecting from Prisma") await prisma_client.disconnect() if litellm.cache is not None: await litellm.cache.disconnect() await jwt_handler.close() if db_writer_client is not None: await db_writer_client.close() # flush remaining langfuse logs if "langfuse" in litellm.success_callback: try: # flush langfuse logs on shutdow from litellm.utils import langFuseLogger if langFuseLogger is not None: langFuseLogger.Langfuse.flush() except Exception: # [DO NOT BLOCK shutdown events for this] pass ## RESET CUSTOM VARIABLES ## cleanup_router_config_variables() @asynccontextmanager async def proxy_startup_event(app: FastAPI): global prisma_client, master_key, use_background_health_checks, llm_router, llm_model_list, general_settings, proxy_budget_rescheduler_min_time, proxy_budget_rescheduler_max_time, litellm_proxy_admin_name, db_writer_client, store_model_in_db, premium_user, _license_check import json init_verbose_loggers() ### LOAD MASTER KEY ### # check if master key set in environment - load from there master_key = get_secret("LITELLM_MASTER_KEY", None) # type: ignore # check if DATABASE_URL in environment - load from there if prisma_client is None: _db_url: Optional[str] = get_secret("DATABASE_URL", None) # type: ignore prisma_client = await ProxyStartupEvent._setup_prisma_client( database_url=_db_url, proxy_logging_obj=proxy_logging_obj, user_api_key_cache=user_api_key_cache, ) ## CHECK PREMIUM USER verbose_proxy_logger.debug( "litellm.proxy.proxy_server.py::startup() - CHECKING PREMIUM USER - {}".format( premium_user ) ) if premium_user is False: premium_user = _license_check.is_premium() ### LOAD CONFIG ### worker_config: Optional[Union[str, dict]] = get_secret("WORKER_CONFIG") # type: ignore env_config_yaml: Optional[str] = get_secret_str("CONFIG_FILE_PATH") verbose_proxy_logger.debug("worker_config: %s", worker_config) # check if it's a valid file path if env_config_yaml is not None: if os.path.isfile(env_config_yaml) and proxy_config.is_yaml( config_file_path=env_config_yaml ): ( llm_router, llm_model_list, general_settings, ) = await proxy_config.load_config( router=llm_router, config_file_path=env_config_yaml ) elif worker_config is not None: if ( isinstance(worker_config, str) and os.path.isfile(worker_config) and proxy_config.is_yaml(config_file_path=worker_config) ): ( llm_router, llm_model_list, general_settings, ) = await proxy_config.load_config( router=llm_router, config_file_path=worker_config ) elif os.environ.get("LITELLM_CONFIG_BUCKET_NAME") is not None and isinstance( worker_config, str ): ( llm_router, llm_model_list, general_settings, ) = await proxy_config.load_config( router=llm_router, config_file_path=worker_config ) elif isinstance(worker_config, dict): await initialize(**worker_config) else: # if not, assume it's a json string worker_config = json.loads(worker_config) if isinstance(worker_config, dict): await initialize(**worker_config) ProxyStartupEvent._initialize_startup_logging( llm_router=llm_router, proxy_logging_obj=proxy_logging_obj, redis_usage_cache=redis_usage_cache, ) ## JWT AUTH ## ProxyStartupEvent._initialize_jwt_auth( general_settings=general_settings, prisma_client=prisma_client, user_api_key_cache=user_api_key_cache, ) if use_background_health_checks: asyncio.create_task( _run_background_health_check() ) # start the background health check coroutine. if prompt_injection_detection_obj is not None: # [TODO] - REFACTOR THIS prompt_injection_detection_obj.update_environment(router=llm_router) verbose_proxy_logger.debug("prisma_client: %s", prisma_client) if prisma_client is not None and master_key is not None: ProxyStartupEvent._add_master_key_hash_to_db( master_key=master_key, prisma_client=prisma_client, litellm_proxy_admin_name=litellm_proxy_admin_name, general_settings=general_settings, ) if prisma_client is not None and litellm.max_budget > 0: ProxyStartupEvent._add_proxy_budget_to_db( litellm_proxy_budget_name=litellm_proxy_admin_name ) ### START BATCH WRITING DB + CHECKING NEW MODELS### if prisma_client is not None: await ProxyStartupEvent.initialize_scheduled_background_jobs( general_settings=general_settings, prisma_client=prisma_client, proxy_budget_rescheduler_min_time=proxy_budget_rescheduler_min_time, proxy_budget_rescheduler_max_time=proxy_budget_rescheduler_max_time, proxy_batch_write_at=proxy_batch_write_at, proxy_logging_obj=proxy_logging_obj, ) ## [Optional] Initialize dd tracer ProxyStartupEvent._init_dd_tracer() # End of startup event yield # Shutdown event await proxy_shutdown_event() app = FastAPI( docs_url=_get_docs_url(), redoc_url=_get_redoc_url(), title=_title, description=_description, version=version, root_path=server_root_path, # check if user passed root path, FastAPI defaults this value to "" lifespan=proxy_startup_event, ) ### CUSTOM API DOCS [ENTERPRISE FEATURE] ### # Custom OpenAPI schema generator to include only selected routes from fastapi.routing import APIWebSocketRoute def get_openapi_schema(): if app.openapi_schema: return app.openapi_schema openapi_schema = get_openapi( title=app.title, version=app.version, description=app.description, routes=app.routes, ) # Find all WebSocket routes websocket_routes = [ route for route in app.routes if isinstance(route, APIWebSocketRoute) ] # Add each WebSocket route to the schema for route in websocket_routes: # Get the base path without query parameters base_path = route.path.split("{")[0].rstrip("?") # Extract parameters from the route parameters = [] if hasattr(route, "dependant"): for param in route.dependant.query_params: parameters.append( { "name": param.name, "in": "query", "required": param.required, "schema": { "type": "string" }, # You can make this more specific if needed } ) openapi_schema["paths"][base_path] = { "get": { "summary": f"WebSocket: {route.name or base_path}", "description": "WebSocket connection endpoint", "operationId": f"websocket_{route.name or base_path.replace('/', '_')}", "parameters": parameters, "responses": {"101": {"description": "WebSocket Protocol Switched"}}, "tags": ["WebSocket"], } } app.openapi_schema = openapi_schema return app.openapi_schema def custom_openapi(): if app.openapi_schema: return app.openapi_schema openapi_schema = get_openapi_schema() # Filter routes to include only specific ones openai_routes = LiteLLMRoutes.openai_routes.value paths_to_include: dict = {} for route in openai_routes: if route in openapi_schema["paths"]: paths_to_include[route] = openapi_schema["paths"][route] openapi_schema["paths"] = paths_to_include app.openapi_schema = openapi_schema return app.openapi_schema if os.getenv("DOCS_FILTERED", "False") == "True" and premium_user: app.openapi = custom_openapi # type: ignore class UserAPIKeyCacheTTLEnum(enum.Enum): in_memory_cache_ttl = 60 # 1 min ttl ## configure via `general_settings::user_api_key_cache_ttl: ` @app.exception_handler(ProxyException) async def openai_exception_handler(request: Request, exc: ProxyException): # NOTE: DO NOT MODIFY THIS, its crucial to map to Openai exceptions headers = exc.headers return JSONResponse( status_code=( int(exc.code) if exc.code else status.HTTP_500_INTERNAL_SERVER_ERROR ), content={ "error": { "message": exc.message, "type": exc.type, "param": exc.param, "code": exc.code, } }, headers=headers, ) router = APIRouter() origins = ["*"] # get current directory try: current_dir = os.path.dirname(os.path.abspath(__file__)) ui_path = os.path.join(current_dir, "_experimental", "out") app.mount("/ui", StaticFiles(directory=ui_path, html=True), name="ui") # Iterate through files in the UI directory for filename in os.listdir(ui_path): if filename.endswith(".html") and filename != "index.html": # Create a folder with the same name as the HTML file folder_name = os.path.splitext(filename)[0] folder_path = os.path.join(ui_path, folder_name) os.makedirs(folder_path, exist_ok=True) # Move the HTML file into the folder and rename it to 'index.html' src = os.path.join(ui_path, filename) dst = os.path.join(folder_path, "index.html") os.rename(src, dst) if server_root_path != "": print( # noqa f"server_root_path is set, forwarding any /ui requests to {server_root_path}/ui" ) # noqa if os.getenv("PROXY_BASE_URL") is None: os.environ["PROXY_BASE_URL"] = server_root_path @app.middleware("http") async def redirect_ui_middleware(request: Request, call_next): if request.url.path.startswith("/ui"): new_url = str(request.url).replace("/ui", f"{server_root_path}/ui", 1) return RedirectResponse(new_url) return await call_next(request) except Exception: pass # current_dir = os.path.dirname(os.path.abspath(__file__)) # ui_path = os.path.join(current_dir, "_experimental", "out") # # Mount this test directory instead # app.mount("/ui", StaticFiles(directory=ui_path, html=True), name="ui") app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) from typing import Dict user_api_base = None user_model = None user_debug = False user_max_tokens = None user_request_timeout = None user_temperature = None user_telemetry = True user_config = None user_headers = None user_config_file_path: Optional[str] = None local_logging = True # writes logs to a local api_log.json file for debugging experimental = False #### GLOBAL VARIABLES #### llm_router: Optional[Router] = None llm_model_list: Optional[list] = None general_settings: dict = {} callback_settings: dict = {} log_file = "api_log.json" worker_config = None master_key: Optional[str] = None otel_logging = False prisma_client: Optional[PrismaClient] = None user_api_key_cache = DualCache( default_in_memory_ttl=UserAPIKeyCacheTTLEnum.in_memory_cache_ttl.value ) model_max_budget_limiter = _PROXY_VirtualKeyModelMaxBudgetLimiter( dual_cache=user_api_key_cache ) litellm.logging_callback_manager.add_litellm_callback(model_max_budget_limiter) redis_usage_cache: Optional[RedisCache] = ( None # redis cache used for tracking spend, tpm/rpm limits ) user_custom_auth = None user_custom_key_generate = None user_custom_sso = None use_background_health_checks = None use_queue = False health_check_interval = None health_check_details = None health_check_results = {} queue: List = [] litellm_proxy_budget_name = "litellm-proxy-budget" litellm_proxy_admin_name = "default_user_id" ui_access_mode: Literal["admin", "all"] = "all" proxy_budget_rescheduler_min_time = 597 proxy_budget_rescheduler_max_time = 605 proxy_batch_write_at = 10 # in seconds litellm_master_key_hash = None disable_spend_logs = False jwt_handler = JWTHandler() prompt_injection_detection_obj: Optional[_OPTIONAL_PromptInjectionDetection] = None store_model_in_db: bool = False open_telemetry_logger: Optional[Any] = None ### INITIALIZE GLOBAL LOGGING OBJECT ### proxy_logging_obj = ProxyLogging( user_api_key_cache=user_api_key_cache, premium_user=premium_user ) ### REDIS QUEUE ### async_result = None celery_app_conn = None celery_fn = None # Redis Queue for handling requests ### DB WRITER ### db_writer_client: Optional[AsyncHTTPHandler] = None ### logger ### def get_custom_headers( *, user_api_key_dict: UserAPIKeyAuth, call_id: Optional[str] = None, model_id: Optional[str] = None, cache_key: Optional[str] = None, api_base: Optional[str] = None, version: Optional[str] = None, model_region: Optional[str] = None, response_cost: Optional[Union[float, str]] = None, hidden_params: Optional[dict] = None, fastest_response_batch_completion: Optional[bool] = None, request_data: Optional[dict] = {}, timeout: Optional[Union[float, int, httpx.Timeout]] = None, **kwargs, ) -> dict: exclude_values = {"", None, "None"} hidden_params = hidden_params or {} headers = { "x-litellm-call-id": call_id, "x-litellm-model-id": model_id, "x-litellm-cache-key": cache_key, "x-litellm-model-api-base": api_base, "x-litellm-version": version, "x-litellm-model-region": model_region, "x-litellm-response-cost": str(response_cost), "x-litellm-key-tpm-limit": str(user_api_key_dict.tpm_limit), "x-litellm-key-rpm-limit": str(user_api_key_dict.rpm_limit), "x-litellm-key-max-budget": str(user_api_key_dict.max_budget), "x-litellm-key-spend": str(user_api_key_dict.spend), "x-litellm-response-duration-ms": str(hidden_params.get("_response_ms", None)), "x-litellm-overhead-duration-ms": str( hidden_params.get("litellm_overhead_time_ms", None) ), "x-litellm-fastest_response_batch_completion": ( str(fastest_response_batch_completion) if fastest_response_batch_completion is not None else None ), "x-litellm-timeout": str(timeout) if timeout is not None else None, **{k: str(v) for k, v in kwargs.items()}, } if request_data: remaining_tokens_header = get_remaining_tokens_and_requests_from_request_data( request_data ) headers.update(remaining_tokens_header) logging_caching_headers = get_logging_caching_headers(request_data) if logging_caching_headers: headers.update(logging_caching_headers) try: return { key: str(value) for key, value in headers.items() if value not in exclude_values } except Exception as e: verbose_proxy_logger.error(f"Error setting custom headers: {e}") return {} async def check_request_disconnection(request: Request, llm_api_call_task): """ Asynchronously checks if the request is disconnected at regular intervals. If the request is disconnected - cancel the litellm.router task - raises an HTTPException with status code 499 and detail "Client disconnected the request". Parameters: - request: Request: The request object to check for disconnection. Returns: - None """ # only run this function for 10 mins -> if these don't get cancelled -> we don't want the server to have many while loops start_time = time.time() while time.time() - start_time < 600: await asyncio.sleep(1) if await request.is_disconnected(): # cancel the LLM API Call task if any passed - this is passed from individual providers # Example OpenAI, Azure, VertexAI etc llm_api_call_task.cancel() raise HTTPException( status_code=499, detail="Client disconnected the request", ) def _resolve_typed_dict_type(typ): """Resolve the actual TypedDict class from a potentially wrapped type.""" from typing_extensions import _TypedDictMeta # type: ignore origin = get_origin(typ) if origin is Union: # Check if it's a Union (like Optional) for arg in get_args(typ): if isinstance(arg, _TypedDictMeta): return arg elif isinstance(typ, type) and isinstance(typ, dict): return typ return None def _resolve_pydantic_type(typ) -> List: """Resolve the actual TypedDict class from a potentially wrapped type.""" origin = get_origin(typ) typs = [] if origin is Union: # Check if it's a Union (like Optional) for arg in get_args(typ): if ( arg is not None and not isinstance(arg, type(None)) and "NoneType" not in str(arg) ): typs.append(arg) elif isinstance(typ, type) and isinstance(typ, BaseModel): return [typ] return typs def load_from_azure_key_vault(use_azure_key_vault: bool = False): if use_azure_key_vault is False: return try: from azure.identity import DefaultAzureCredential from azure.keyvault.secrets import SecretClient # Set your Azure Key Vault URI KVUri = os.getenv("AZURE_KEY_VAULT_URI", None) if KVUri is None: raise Exception( "Error when loading keys from Azure Key Vault: AZURE_KEY_VAULT_URI is not set." ) credential = DefaultAzureCredential() # Create the SecretClient using the credential client = SecretClient(vault_url=KVUri, credential=credential) litellm.secret_manager_client = client litellm._key_management_system = KeyManagementSystem.AZURE_KEY_VAULT except Exception as e: _error_str = str(e) verbose_proxy_logger.exception( "Error when loading keys from Azure Key Vault: %s .Ensure you run `pip install azure-identity azure-keyvault-secrets`", _error_str, ) def cost_tracking(): global prisma_client if prisma_client is not None: if isinstance(litellm._async_success_callback, list): verbose_proxy_logger.debug("setting litellm success callback to track cost") if (_PROXY_track_cost_callback) not in litellm._async_success_callback: # type: ignore litellm.logging_callback_manager.add_litellm_async_success_callback(_PROXY_track_cost_callback) # type: ignore def error_tracking(): global prisma_client if prisma_client is not None: if isinstance(litellm.failure_callback, list): verbose_proxy_logger.debug("setting litellm failure callback to track cost") if (_PROXY_failure_handler) not in litellm.failure_callback: # type: ignore litellm.logging_callback_manager.add_litellm_failure_callback(_PROXY_failure_handler) # type: ignore def _set_spend_logs_payload( payload: Union[dict, SpendLogsPayload], prisma_client: PrismaClient, spend_logs_url: Optional[str] = None, ): if prisma_client is not None and spend_logs_url is not None: if isinstance(payload["startTime"], datetime): payload["startTime"] = payload["startTime"].isoformat() if isinstance(payload["endTime"], datetime): payload["endTime"] = payload["endTime"].isoformat() prisma_client.spend_log_transactions.append(payload) elif prisma_client is not None: prisma_client.spend_log_transactions.append(payload) return prisma_client async def update_database( # noqa: PLR0915 token, response_cost, user_id=None, end_user_id=None, team_id=None, kwargs=None, completion_response=None, start_time=None, end_time=None, org_id=None, ): try: global prisma_client verbose_proxy_logger.debug( f"Enters prisma db call, response_cost: {response_cost}, token: {token}; user_id: {user_id}; team_id: {team_id}" ) if token is not None and isinstance(token, str) and token.startswith("sk-"): hashed_token = hash_token(token=token) else: hashed_token = token ### UPDATE USER SPEND ### async def _update_user_db(): """ - Update that user's row - Update litellm-proxy-budget row (global proxy spend) """ ## if an end-user is passed in, do an upsert - we can't guarantee they already exist in db existing_user_obj = await user_api_key_cache.async_get_cache(key=user_id) if existing_user_obj is not None and isinstance(existing_user_obj, dict): existing_user_obj = LiteLLM_UserTable(**existing_user_obj) try: if prisma_client is not None: # update user_ids = [user_id] if ( litellm.max_budget > 0 ): # track global proxy budget, if user set max budget user_ids.append(litellm_proxy_budget_name) ### KEY CHANGE ### for _id in user_ids: if _id is not None: prisma_client.user_list_transactons[_id] = ( response_cost + prisma_client.user_list_transactons.get(_id, 0) ) if end_user_id is not None: prisma_client.end_user_list_transactons[end_user_id] = ( response_cost + prisma_client.end_user_list_transactons.get( end_user_id, 0 ) ) except Exception as e: verbose_proxy_logger.info( "\033[91m" + f"Update User DB call failed to execute {str(e)}\n{traceback.format_exc()}" ) ### UPDATE KEY SPEND ### async def _update_key_db(): try: verbose_proxy_logger.debug( f"adding spend to key db. Response cost: {response_cost}. Token: {hashed_token}." ) if hashed_token is None: return if prisma_client is not None: prisma_client.key_list_transactons[hashed_token] = ( response_cost + prisma_client.key_list_transactons.get(hashed_token, 0) ) except Exception as e: verbose_proxy_logger.exception( f"Update Key DB Call failed to execute - {str(e)}" ) raise e ### UPDATE SPEND LOGS ### async def _insert_spend_log_to_db(): try: global prisma_client if prisma_client is not None: # Helper to generate payload to log payload = get_logging_payload( kwargs=kwargs, response_obj=completion_response, start_time=start_time, end_time=end_time, ) payload["spend"] = response_cost prisma_client = _set_spend_logs_payload( payload=payload, spend_logs_url=os.getenv("SPEND_LOGS_URL"), prisma_client=prisma_client, ) except Exception as e: verbose_proxy_logger.debug( f"Update Spend Logs DB failed to execute - {str(e)}\n{traceback.format_exc()}" ) raise e ### UPDATE TEAM SPEND ### async def _update_team_db(): try: verbose_proxy_logger.debug( f"adding spend to team db. Response cost: {response_cost}. team_id: {team_id}." ) if team_id is None: verbose_proxy_logger.debug( "track_cost_callback: team_id is None. Not tracking spend for team" ) return if prisma_client is not None: prisma_client.team_list_transactons[team_id] = ( response_cost + prisma_client.team_list_transactons.get(team_id, 0) ) try: # Track spend of the team member within this team # key is "team_id::::user_id::" team_member_key = f"team_id::{team_id}::user_id::{user_id}" prisma_client.team_member_list_transactons[team_member_key] = ( response_cost + prisma_client.team_member_list_transactons.get( team_member_key, 0 ) ) except Exception: pass except Exception as e: verbose_proxy_logger.info( f"Update Team DB failed to execute - {str(e)}\n{traceback.format_exc()}" ) raise e ### UPDATE ORG SPEND ### async def _update_org_db(): try: verbose_proxy_logger.debug( "adding spend to org db. Response cost: {}. org_id: {}.".format( response_cost, org_id ) ) if org_id is None: verbose_proxy_logger.debug( "track_cost_callback: org_id is None. Not tracking spend for org" ) return if prisma_client is not None: prisma_client.org_list_transactons[org_id] = ( response_cost + prisma_client.org_list_transactons.get(org_id, 0) ) except Exception as e: verbose_proxy_logger.info( f"Update Org DB failed to execute - {str(e)}\n{traceback.format_exc()}" ) raise e asyncio.create_task(_update_user_db()) asyncio.create_task(_update_key_db()) asyncio.create_task(_update_team_db()) asyncio.create_task(_update_org_db()) # asyncio.create_task(_insert_spend_log_to_db()) if disable_spend_logs is False: await _insert_spend_log_to_db() else: verbose_proxy_logger.info( "disable_spend_logs=True. Skipping writing spend logs to db. Other spend updates - Key/User/Team table will still occur." ) verbose_proxy_logger.debug("Runs spend update on all tables") except Exception: verbose_proxy_logger.debug( f"Error updating Prisma database: {traceback.format_exc()}" ) async def update_cache( # noqa: PLR0915 token: Optional[str], user_id: Optional[str], end_user_id: Optional[str], team_id: Optional[str], response_cost: Optional[float], parent_otel_span: Optional[Span], # type: ignore ): """ Use this to update the cache with new user spend. Put any alerting logic in here. """ values_to_update_in_cache: List[Tuple[Any, Any]] = [] ### UPDATE KEY SPEND ### async def _update_key_cache(token: str, response_cost: float): # Fetch the existing cost for the given token if isinstance(token, str) and token.startswith("sk-"): hashed_token = hash_token(token=token) else: hashed_token = token verbose_proxy_logger.debug("_update_key_cache: hashed_token=%s", hashed_token) existing_spend_obj: LiteLLM_VerificationTokenView = await user_api_key_cache.async_get_cache(key=hashed_token) # type: ignore verbose_proxy_logger.debug( f"_update_key_cache: existing_spend_obj={existing_spend_obj}" ) verbose_proxy_logger.debug( f"_update_key_cache: existing spend: {existing_spend_obj}" ) if existing_spend_obj is None: return else: existing_spend = existing_spend_obj.spend # Calculate the new cost by adding the existing cost and response_cost new_spend = existing_spend + response_cost ## CHECK IF USER PROJECTED SPEND > SOFT LIMIT if ( existing_spend_obj.soft_budget_cooldown is False and existing_spend_obj.litellm_budget_table is not None and ( _is_projected_spend_over_limit( current_spend=new_spend, soft_budget_limit=existing_spend_obj.litellm_budget_table[ "soft_budget" ], ) is True ) ): projected_spend, projected_exceeded_date = _get_projected_spend_over_limit( current_spend=new_spend, soft_budget_limit=existing_spend_obj.litellm_budget_table.get( "soft_budget", None ), ) # type: ignore soft_limit = existing_spend_obj.litellm_budget_table.get( "soft_budget", float("inf") ) call_info = CallInfo( token=existing_spend_obj.token or "", spend=new_spend, key_alias=existing_spend_obj.key_alias, max_budget=soft_limit, user_id=existing_spend_obj.user_id, projected_spend=projected_spend, projected_exceeded_date=projected_exceeded_date, ) # alert user asyncio.create_task( proxy_logging_obj.budget_alerts( type="projected_limit_exceeded", user_info=call_info, ) ) # set cooldown on alert if ( existing_spend_obj is not None and getattr(existing_spend_obj, "team_spend", None) is not None ): existing_team_spend = existing_spend_obj.team_spend or 0 # Calculate the new cost by adding the existing cost and response_cost existing_spend_obj.team_spend = existing_team_spend + response_cost if ( existing_spend_obj is not None and getattr(existing_spend_obj, "team_member_spend", None) is not None ): existing_team_member_spend = existing_spend_obj.team_member_spend or 0 # Calculate the new cost by adding the existing cost and response_cost existing_spend_obj.team_member_spend = ( existing_team_member_spend + response_cost ) # Update the cost column for the given token existing_spend_obj.spend = new_spend values_to_update_in_cache.append((hashed_token, existing_spend_obj)) ### UPDATE USER SPEND ### async def _update_user_cache(): ## UPDATE CACHE FOR USER ID + GLOBAL PROXY user_ids = [user_id] try: for _id in user_ids: # Fetch the existing cost for the given user if _id is None: continue existing_spend_obj = await user_api_key_cache.async_get_cache(key=_id) if existing_spend_obj is None: # do nothing if there is no cache value return verbose_proxy_logger.debug( f"_update_user_db: existing spend: {existing_spend_obj}; response_cost: {response_cost}" ) if isinstance(existing_spend_obj, dict): existing_spend = existing_spend_obj["spend"] else: existing_spend = existing_spend_obj.spend # Calculate the new cost by adding the existing cost and response_cost new_spend = existing_spend + response_cost # Update the cost column for the given user if isinstance(existing_spend_obj, dict): existing_spend_obj["spend"] = new_spend values_to_update_in_cache.append((_id, existing_spend_obj)) else: existing_spend_obj.spend = new_spend values_to_update_in_cache.append((_id, existing_spend_obj.json())) ## UPDATE GLOBAL PROXY ## global_proxy_spend = await user_api_key_cache.async_get_cache( key="{}:spend".format(litellm_proxy_admin_name) ) if global_proxy_spend is None: # do nothing if not in cache return elif response_cost is not None and global_proxy_spend is not None: increment = global_proxy_spend + response_cost values_to_update_in_cache.append( ("{}:spend".format(litellm_proxy_admin_name), increment) ) except Exception as e: verbose_proxy_logger.debug( f"An error occurred updating user cache: {str(e)}\n\n{traceback.format_exc()}" ) ### UPDATE END-USER SPEND ### async def _update_end_user_cache(): if end_user_id is None or response_cost is None: return _id = "end_user_id:{}".format(end_user_id) try: # Fetch the existing cost for the given user existing_spend_obj = await user_api_key_cache.async_get_cache(key=_id) if existing_spend_obj is None: # if user does not exist in LiteLLM_UserTable, create a new user # do nothing if end-user not in api key cache return verbose_proxy_logger.debug( f"_update_end_user_db: existing spend: {existing_spend_obj}; response_cost: {response_cost}" ) if existing_spend_obj is None: existing_spend = 0 else: if isinstance(existing_spend_obj, dict): existing_spend = existing_spend_obj["spend"] else: existing_spend = existing_spend_obj.spend # Calculate the new cost by adding the existing cost and response_cost new_spend = existing_spend + response_cost # Update the cost column for the given user if isinstance(existing_spend_obj, dict): existing_spend_obj["spend"] = new_spend values_to_update_in_cache.append((_id, existing_spend_obj)) else: existing_spend_obj.spend = new_spend values_to_update_in_cache.append((_id, existing_spend_obj.json())) except Exception as e: verbose_proxy_logger.exception( f"An error occurred updating end user cache: {str(e)}" ) ### UPDATE TEAM SPEND ### async def _update_team_cache(): if team_id is None or response_cost is None: return _id = "team_id:{}".format(team_id) try: # Fetch the existing cost for the given user existing_spend_obj: Optional[LiteLLM_TeamTable] = ( await user_api_key_cache.async_get_cache(key=_id) ) if existing_spend_obj is None: # do nothing if team not in api key cache return verbose_proxy_logger.debug( f"_update_team_db: existing spend: {existing_spend_obj}; response_cost: {response_cost}" ) if existing_spend_obj is None: existing_spend: Optional[float] = 0.0 else: if isinstance(existing_spend_obj, dict): existing_spend = existing_spend_obj["spend"] else: existing_spend = existing_spend_obj.spend if existing_spend is None: existing_spend = 0.0 # Calculate the new cost by adding the existing cost and response_cost new_spend = existing_spend + response_cost # Update the cost column for the given user if isinstance(existing_spend_obj, dict): existing_spend_obj["spend"] = new_spend values_to_update_in_cache.append((_id, existing_spend_obj)) else: existing_spend_obj.spend = new_spend values_to_update_in_cache.append((_id, existing_spend_obj)) except Exception as e: verbose_proxy_logger.exception( f"An error occurred updating end user cache: {str(e)}" ) if token is not None and response_cost is not None: await _update_key_cache(token=token, response_cost=response_cost) if user_id is not None: await _update_user_cache() if end_user_id is not None: await _update_end_user_cache() if team_id is not None: await _update_team_cache() asyncio.create_task( user_api_key_cache.async_set_cache_pipeline( cache_list=values_to_update_in_cache, ttl=60, litellm_parent_otel_span=parent_otel_span, ) ) def run_ollama_serve(): try: command = ["ollama", "serve"] with open(os.devnull, "w") as devnull: subprocess.Popen(command, stdout=devnull, stderr=devnull) except Exception as e: verbose_proxy_logger.debug( f""" LiteLLM Warning: proxy started with `ollama` model\n`ollama serve` failed with Exception{e}. \nEnsure you run `ollama serve` """ ) async def _run_background_health_check(): """ Periodically run health checks in the background on the endpoints. Update health_check_results, based on this. """ global health_check_results, llm_model_list, health_check_interval, health_check_details # make 1 deep copy of llm_model_list -> use this for all background health checks _llm_model_list = copy.deepcopy(llm_model_list) if _llm_model_list is None: return while True: healthy_endpoints, unhealthy_endpoints = await perform_health_check( model_list=_llm_model_list, details=health_check_details ) # Update the global variable with the health check results health_check_results["healthy_endpoints"] = healthy_endpoints health_check_results["unhealthy_endpoints"] = unhealthy_endpoints health_check_results["healthy_count"] = len(healthy_endpoints) health_check_results["unhealthy_count"] = len(unhealthy_endpoints) if health_check_interval is not None and isinstance( health_check_interval, float ): await asyncio.sleep(health_check_interval) class ProxyConfig: """ Abstraction class on top of config loading/updating logic. Gives us one place to control all config updating logic. """ def __init__(self) -> None: self.config: Dict[str, Any] = {} def is_yaml(self, config_file_path: str) -> bool: if not os.path.isfile(config_file_path): return False _, file_extension = os.path.splitext(config_file_path) return file_extension.lower() == ".yaml" or file_extension.lower() == ".yml" def _load_yaml_file(self, file_path: str) -> dict: """ Load and parse a YAML file """ try: with open(file_path, "r") as file: return yaml.safe_load(file) or {} except Exception as e: raise Exception(f"Error loading yaml file {file_path}: {str(e)}") async def _get_config_from_file( self, config_file_path: Optional[str] = None ) -> dict: """ Given a config file path, load the config from the file. Args: config_file_path (str): path to the config file Returns: dict: config """ global prisma_client, user_config_file_path file_path = config_file_path or user_config_file_path if config_file_path is not None: user_config_file_path = config_file_path # Load existing config ## Yaml if os.path.exists(f"{file_path}"): with open(f"{file_path}", "r") as config_file: config = yaml.safe_load(config_file) elif file_path is not None: raise Exception(f"Config file not found: {file_path}") else: config = { "model_list": [], "general_settings": {}, "router_settings": {}, "litellm_settings": {}, } # Process includes config = self._process_includes( config=config, base_dir=os.path.dirname(os.path.abspath(file_path or "")) ) verbose_proxy_logger.debug(f"loaded config={json.dumps(config, indent=4)}") return config def _process_includes(self, config: dict, base_dir: str) -> dict: """ Process includes by appending their contents to the main config Handles nested config.yamls with `include` section Example config: This will get the contents from files in `include` and append it ```yaml include: - model_config.yaml litellm_settings: callbacks: ["prometheus"] ``` """ if "include" not in config: return config if not isinstance(config["include"], list): raise ValueError("'include' must be a list of file paths") # Load and append all included files for include_file in config["include"]: file_path = os.path.join(base_dir, include_file) if not os.path.exists(file_path): raise FileNotFoundError(f"Included file not found: {file_path}") included_config = self._load_yaml_file(file_path) # Simply update/extend the main config with included config for key, value in included_config.items(): if isinstance(value, list) and key in config: config[key].extend(value) else: config[key] = value # Remove the include directive del config["include"] return config async def save_config(self, new_config: dict): global prisma_client, general_settings, user_config_file_path, store_model_in_db # Load existing config ## DB - writes valid config to db """ - Do not write restricted params like 'api_key' to the database - if api_key is passed, save that to the local environment or connected secret manage (maybe expose `litellm.save_secret()`) """ if prisma_client is not None and ( general_settings.get("store_model_in_db", False) is True or store_model_in_db ): # if using - db for config - models are in ModelTable new_config.pop("model_list", None) await prisma_client.insert_data(data=new_config, table_name="config") else: # Save the updated config - if user is not using a dB ## YAML with open(f"{user_config_file_path}", "w") as config_file: yaml.dump(new_config, config_file, default_flow_style=False) def _check_for_os_environ_vars( self, config: dict, depth: int = 0, max_depth: int = 10 ) -> dict: """ Check for os.environ/ variables in the config and replace them with the actual values. Includes a depth limit to prevent infinite recursion. Args: config (dict): The configuration dictionary to process. depth (int): Current recursion depth. max_depth (int): Maximum allowed recursion depth. Returns: dict: Processed configuration dictionary. """ if depth > max_depth: verbose_proxy_logger.warning( f"Maximum recursion depth ({max_depth}) reached while processing config." ) return config for key, value in config.items(): if isinstance(value, dict): config[key] = self._check_for_os_environ_vars( config=value, depth=depth + 1, max_depth=max_depth ) elif isinstance(value, list): for item in value: if isinstance(item, dict): item = self._check_for_os_environ_vars( config=item, depth=depth + 1, max_depth=max_depth ) # if the value is a string and starts with "os.environ/" - then it's an environment variable elif isinstance(value, str) and value.startswith("os.environ/"): config[key] = get_secret(value) return config def _get_team_config(self, team_id: str, all_teams_config: List[Dict]) -> Dict: team_config: dict = {} for team in all_teams_config: if "team_id" not in team: raise Exception(f"team_id missing from team: {team}") if team_id == team["team_id"]: team_config = team break for k, v in team_config.items(): if isinstance(v, str) and v.startswith("os.environ/"): team_config[k] = get_secret(v) return team_config def load_team_config(self, team_id: str): """ - for a given team id - return the relevant completion() call params """ # load existing config config = self.get_config_state() ## LITELLM MODULE SETTINGS (e.g. litellm.drop_params=True,..) litellm_settings = config.get("litellm_settings", {}) all_teams_config = litellm_settings.get("default_team_settings", None) if all_teams_config is None: return {} team_config = self._get_team_config( team_id=team_id, all_teams_config=all_teams_config ) return team_config def _init_cache( self, cache_params: dict, ): global redis_usage_cache from litellm import Cache if "default_in_memory_ttl" in cache_params: litellm.default_in_memory_ttl = cache_params["default_in_memory_ttl"] if "default_redis_ttl" in cache_params: litellm.default_redis_ttl = cache_params["default_in_redis_ttl"] litellm.cache = Cache(**cache_params) if litellm.cache is not None and isinstance(litellm.cache.cache, RedisCache): ## INIT PROXY REDIS USAGE CLIENT ## redis_usage_cache = litellm.cache.cache async def get_config(self, config_file_path: Optional[str] = None) -> dict: """ Load config file Supports reading from: - .yaml file paths - LiteLLM connected DB - GCS - S3 Args: config_file_path (str): path to the config file Returns: dict: config """ global prisma_client, store_model_in_db # Load existing config if os.environ.get("LITELLM_CONFIG_BUCKET_NAME") is not None: bucket_name = os.environ.get("LITELLM_CONFIG_BUCKET_NAME") object_key = os.environ.get("LITELLM_CONFIG_BUCKET_OBJECT_KEY") bucket_type = os.environ.get("LITELLM_CONFIG_BUCKET_TYPE") verbose_proxy_logger.debug( "bucket_name: %s, object_key: %s", bucket_name, object_key ) if bucket_type == "gcs": config = await get_config_file_contents_from_gcs( bucket_name=bucket_name, object_key=object_key ) else: config = get_file_contents_from_s3( bucket_name=bucket_name, object_key=object_key ) if config is None: raise Exception("Unable to load config from given source.") else: # default to file config = await self._get_config_from_file(config_file_path=config_file_path) ## UPDATE CONFIG WITH DB if prisma_client is not None and store_model_in_db is True: config = await self._update_config_from_db( config=config, prisma_client=prisma_client, store_model_in_db=store_model_in_db, ) ## PRINT YAML FOR CONFIRMING IT WORKS printed_yaml = copy.deepcopy(config) printed_yaml.pop("environment_variables", None) config = self._check_for_os_environ_vars(config=config) self.update_config_state(config=config) return config def update_config_state(self, config: dict): self.config = config def get_config_state(self): """ Returns a deep copy of the config, Do this, to avoid mutating the config state outside of allowed methods """ try: return copy.deepcopy(self.config) except Exception as e: verbose_proxy_logger.debug( "ProxyConfig:get_config_state(): Error returning copy of config state. self.config={}\nError: {}".format( self.config, e ) ) return {} async def load_config( # noqa: PLR0915 self, router: Optional[litellm.Router], config_file_path: str ): """ Load config values into proxy global state """ global master_key, user_config_file_path, otel_logging, user_custom_auth, user_custom_auth_path, user_custom_key_generate, user_custom_sso, use_background_health_checks, health_check_interval, use_queue, proxy_budget_rescheduler_max_time, proxy_budget_rescheduler_min_time, ui_access_mode, litellm_master_key_hash, proxy_batch_write_at, disable_spend_logs, prompt_injection_detection_obj, redis_usage_cache, store_model_in_db, premium_user, open_telemetry_logger, health_check_details, callback_settings config: dict = await self.get_config(config_file_path=config_file_path) ## ENVIRONMENT VARIABLES environment_variables = config.get("environment_variables", None) if environment_variables: for key, value in environment_variables.items(): os.environ[key] = str(get_secret(secret_name=key, default_value=value)) # check if litellm_license in general_settings if "LITELLM_LICENSE" in environment_variables: _license_check.license_str = os.getenv("LITELLM_LICENSE", None) premium_user = _license_check.is_premium() ## Callback settings callback_settings = config.get("callback_settings", None) ## LITELLM MODULE SETTINGS (e.g. litellm.drop_params=True,..) litellm_settings = config.get("litellm_settings", None) if litellm_settings is None: litellm_settings = {} if litellm_settings: # ANSI escape code for blue text blue_color_code = "\033[94m" reset_color_code = "\033[0m" for key, value in litellm_settings.items(): if key == "cache" and value is True: print(f"{blue_color_code}\nSetting Cache on Proxy") # noqa from litellm.caching.caching import Cache cache_params = {} if "cache_params" in litellm_settings: cache_params_in_config = litellm_settings["cache_params"] # overwrie cache_params with cache_params_in_config cache_params.update(cache_params_in_config) cache_type = cache_params.get("type", "redis") verbose_proxy_logger.debug("passed cache type=%s", cache_type) if ( cache_type == "redis" or cache_type == "redis-semantic" ) and len(cache_params.keys()) == 0: cache_host = get_secret("REDIS_HOST", None) cache_port = get_secret("REDIS_PORT", None) cache_password = None cache_params.update( { "type": cache_type, "host": cache_host, "port": cache_port, } ) if get_secret("REDIS_PASSWORD", None) is not None: cache_password = get_secret("REDIS_PASSWORD", None) cache_params.update( { "password": cache_password, } ) # Assuming cache_type, cache_host, cache_port, and cache_password are strings verbose_proxy_logger.debug( "%sCache Type:%s %s", blue_color_code, reset_color_code, cache_type, ) verbose_proxy_logger.debug( "%sCache Host:%s %s", blue_color_code, reset_color_code, cache_host, ) verbose_proxy_logger.debug( "%sCache Port:%s %s", blue_color_code, reset_color_code, cache_port, ) verbose_proxy_logger.debug( "%sCache Password:%s %s", blue_color_code, reset_color_code, cache_password, ) if cache_type == "redis-semantic": # by default this should always be async cache_params.update({"redis_semantic_cache_use_async": True}) # users can pass os.environ/ variables on the proxy - we should read them from the env for key, value in cache_params.items(): if type(value) is str and value.startswith("os.environ/"): cache_params[key] = get_secret(value) ## to pass a complete url, or set ssl=True, etc. just set it as `os.environ[REDIS_URL] = `, _redis.py checks for REDIS specific environment variables self._init_cache(cache_params=cache_params) if litellm.cache is not None: verbose_proxy_logger.debug( f"{blue_color_code}Set Cache on LiteLLM Proxy{reset_color_code}" ) elif key == "cache" and value is False: pass elif key == "guardrails": guardrail_name_config_map = initialize_guardrails( guardrails_config=value, premium_user=premium_user, config_file_path=config_file_path, litellm_settings=litellm_settings, ) litellm.guardrail_name_config_map = guardrail_name_config_map elif key == "callbacks": initialize_callbacks_on_proxy( value=value, premium_user=premium_user, config_file_path=config_file_path, litellm_settings=litellm_settings, ) elif key == "post_call_rules": litellm.post_call_rules = [ get_instance_fn(value=value, config_file_path=config_file_path) ] verbose_proxy_logger.debug( f"litellm.post_call_rules: {litellm.post_call_rules}" ) elif key == "max_internal_user_budget": litellm.max_internal_user_budget = float(value) # type: ignore elif key == "default_max_internal_user_budget": litellm.default_max_internal_user_budget = float(value) if litellm.max_internal_user_budget is None: litellm.max_internal_user_budget = ( litellm.default_max_internal_user_budget ) elif key == "custom_provider_map": from litellm.utils import custom_llm_setup litellm.custom_provider_map = [ { "provider": item["provider"], "custom_handler": get_instance_fn( value=item["custom_handler"], config_file_path=config_file_path, ), } for item in value ] custom_llm_setup() elif key == "success_callback": litellm.success_callback = [] # initialize success callbacks for callback in value: # user passed custom_callbacks.async_on_succes_logger. They need us to import a function if "." in callback: litellm.logging_callback_manager.add_litellm_success_callback( get_instance_fn(value=callback) ) # these are litellm callbacks - "langfuse", "sentry", "wandb" else: litellm.logging_callback_manager.add_litellm_success_callback( callback ) if "prometheus" in callback: if not premium_user: raise Exception( CommonProxyErrors.not_premium_user.value ) verbose_proxy_logger.debug( "Starting Prometheus Metrics on /metrics" ) from prometheus_client import make_asgi_app # Add prometheus asgi middleware to route /metrics requests metrics_app = make_asgi_app() app.mount("/metrics", metrics_app) print( # noqa f"{blue_color_code} Initialized Success Callbacks - {litellm.success_callback} {reset_color_code}" ) # noqa elif key == "failure_callback": litellm.failure_callback = [] # initialize success callbacks for callback in value: # user passed custom_callbacks.async_on_succes_logger. They need us to import a function if "." in callback: litellm.logging_callback_manager.add_litellm_failure_callback( get_instance_fn(value=callback) ) # these are litellm callbacks - "langfuse", "sentry", "wandb" else: litellm.logging_callback_manager.add_litellm_failure_callback( callback ) print( # noqa f"{blue_color_code} Initialized Failure Callbacks - {litellm.failure_callback} {reset_color_code}" ) # noqa elif key == "cache_params": # this is set in the cache branch # see usage here: https://docs.litellm.ai/docs/proxy/caching pass elif key == "default_team_settings": for idx, team_setting in enumerate( value ): # run through pydantic validation try: TeamDefaultSettings(**team_setting) except Exception: if isinstance(team_setting, dict): raise Exception( f"team_id missing from default_team_settings at index={idx}\npassed in value={team_setting.keys()}" ) raise Exception( f"team_id missing from default_team_settings at index={idx}\npassed in value={type(team_setting)}" ) verbose_proxy_logger.debug( f"{blue_color_code} setting litellm.{key}={value}{reset_color_code}" ) setattr(litellm, key, value) elif key == "upperbound_key_generate_params": if value is not None and isinstance(value, dict): for _k, _v in value.items(): if isinstance(_v, str) and _v.startswith("os.environ/"): value[_k] = get_secret(_v) litellm.upperbound_key_generate_params = ( LiteLLM_UpperboundKeyGenerateParams(**value) ) else: raise Exception( f"Invalid value set for upperbound_key_generate_params - value={value}" ) else: verbose_proxy_logger.debug( f"{blue_color_code} setting litellm.{key}={value}{reset_color_code}" ) setattr(litellm, key, value) ## GENERAL SERVER SETTINGS (e.g. master key,..) # do this after initializing litellm, to ensure sentry logging works for proxylogging general_settings = config.get("general_settings", {}) if general_settings is None: general_settings = {} if general_settings: ### LOAD SECRET MANAGER ### key_management_system = general_settings.get("key_management_system", None) self.initialize_secret_manager(key_management_system=key_management_system) key_management_settings = general_settings.get( "key_management_settings", None ) if key_management_settings is not None: litellm._key_management_settings = KeyManagementSettings( **key_management_settings ) ### [DEPRECATED] LOAD FROM GOOGLE KMS ### old way of loading from google kms use_google_kms = general_settings.get("use_google_kms", False) load_google_kms(use_google_kms=use_google_kms) ### [DEPRECATED] LOAD FROM AZURE KEY VAULT ### old way of loading from azure secret manager use_azure_key_vault = general_settings.get("use_azure_key_vault", False) load_from_azure_key_vault(use_azure_key_vault=use_azure_key_vault) ### ALERTING ### self._load_alerting_settings(general_settings=general_settings) ### CONNECT TO DATABASE ### database_url = general_settings.get("database_url", None) if database_url and database_url.startswith("os.environ/"): verbose_proxy_logger.debug("GOING INTO LITELLM.GET_SECRET!") database_url = get_secret(database_url) verbose_proxy_logger.debug("RETRIEVED DB URL: %s", database_url) ### MASTER KEY ### master_key = general_settings.get( "master_key", get_secret("LITELLM_MASTER_KEY", None) ) if master_key and master_key.startswith("os.environ/"): master_key = get_secret(master_key) # type: ignore if not isinstance(master_key, str): raise Exception( "Master key must be a string. Current type - {}".format( type(master_key) ) ) if master_key is not None and isinstance(master_key, str): litellm_master_key_hash = hash_token(master_key) ### USER API KEY CACHE IN-MEMORY TTL ### user_api_key_cache_ttl = general_settings.get( "user_api_key_cache_ttl", None ) if user_api_key_cache_ttl is not None: user_api_key_cache.update_cache_ttl( default_in_memory_ttl=float(user_api_key_cache_ttl), default_redis_ttl=None, # user_api_key_cache is an in-memory cache ) ### STORE MODEL IN DB ### feature flag for `/model/new` store_model_in_db = general_settings.get("store_model_in_db", False) if store_model_in_db is None: store_model_in_db = False ### CUSTOM API KEY AUTH ### ## pass filepath custom_auth = general_settings.get("custom_auth", None) if custom_auth is not None: user_custom_auth = get_instance_fn( value=custom_auth, config_file_path=config_file_path ) custom_key_generate = general_settings.get("custom_key_generate", None) if custom_key_generate is not None: user_custom_key_generate = get_instance_fn( value=custom_key_generate, config_file_path=config_file_path ) custom_sso = general_settings.get("custom_sso", None) if custom_sso is not None: user_custom_sso = get_instance_fn( value=custom_sso, config_file_path=config_file_path ) ## pass through endpoints if general_settings.get("pass_through_endpoints", None) is not None: await initialize_pass_through_endpoints( pass_through_endpoints=general_settings["pass_through_endpoints"] ) ## ADMIN UI ACCESS ## ui_access_mode = general_settings.get( "ui_access_mode", "all" ) # can be either ["admin_only" or "all"] ### ALLOWED IP ### allowed_ips = general_settings.get("allowed_ips", None) if allowed_ips is not None and premium_user is False: raise ValueError( "allowed_ips is an Enterprise Feature. Please add a valid LITELLM_LICENSE to your envionment." ) ## BUDGET RESCHEDULER ## proxy_budget_rescheduler_min_time = general_settings.get( "proxy_budget_rescheduler_min_time", proxy_budget_rescheduler_min_time ) proxy_budget_rescheduler_max_time = general_settings.get( "proxy_budget_rescheduler_max_time", proxy_budget_rescheduler_max_time ) ## BATCH WRITER ## proxy_batch_write_at = general_settings.get( "proxy_batch_write_at", proxy_batch_write_at ) ## DISABLE SPEND LOGS ## - gives a perf improvement disable_spend_logs = general_settings.get( "disable_spend_logs", disable_spend_logs ) ### BACKGROUND HEALTH CHECKS ### # Enable background health checks use_background_health_checks = general_settings.get( "background_health_checks", False ) health_check_interval = general_settings.get("health_check_interval", 300) health_check_details = general_settings.get("health_check_details", True) ### RBAC ### rbac_role_permissions = general_settings.get("role_permissions", None) if rbac_role_permissions is not None: general_settings["role_permissions"] = [ # validate role permissions RoleBasedPermissions(**role_permission) for role_permission in rbac_role_permissions ] ## check if user has set a premium feature in general_settings if ( general_settings.get("enforced_params") is not None and premium_user is not True ): raise ValueError( "Trying to use `enforced_params`" + CommonProxyErrors.not_premium_user.value ) # check if litellm_license in general_settings if "litellm_license" in general_settings: _license_check.license_str = general_settings["litellm_license"] premium_user = _license_check.is_premium() router_params: dict = { "cache_responses": litellm.cache is not None, # cache if user passed in cache values } ## MODEL LIST model_list = config.get("model_list", None) if model_list: router_params["model_list"] = model_list print( # noqa "\033[32mLiteLLM: Proxy initialized with Config, Set models:\033[0m" ) # noqa for model in model_list: ### LOAD FROM os.environ/ ### for k, v in model["litellm_params"].items(): if isinstance(v, str) and v.startswith("os.environ/"): model["litellm_params"][k] = get_secret(v) print(f"\033[32m {model.get('model_name', '')}\033[0m") # noqa litellm_model_name = model["litellm_params"]["model"] litellm_model_api_base = model["litellm_params"].get("api_base", None) if "ollama" in litellm_model_name and litellm_model_api_base is None: run_ollama_serve() ## ASSISTANT SETTINGS assistants_config: Optional[AssistantsTypedDict] = None assistant_settings = config.get("assistant_settings", None) if assistant_settings: for k, v in assistant_settings["litellm_params"].items(): if isinstance(v, str) and v.startswith("os.environ/"): _v = v.replace("os.environ/", "") v = os.getenv(_v) assistant_settings["litellm_params"][k] = v assistants_config = AssistantsTypedDict(**assistant_settings) # type: ignore ## /fine_tuning/jobs endpoints config finetuning_config = config.get("finetune_settings", None) set_fine_tuning_config(config=finetuning_config) ## /files endpoint config files_config = config.get("files_settings", None) set_files_config(config=files_config) ## default config for vertex ai routes default_vertex_config = config.get("default_vertex_config", None) set_default_vertex_config(config=default_vertex_config) ## ROUTER SETTINGS (e.g. routing_strategy, ...) router_settings = config.get("router_settings", None) if router_settings and isinstance(router_settings, dict): arg_spec = inspect.getfullargspec(litellm.Router) # model list already set exclude_args = { "self", "model_list", } available_args = [x for x in arg_spec.args if x not in exclude_args] for k, v in router_settings.items(): if k in available_args: router_params[k] = v router = litellm.Router( **router_params, assistants_config=assistants_config, router_general_settings=RouterGeneralSettings( async_only_mode=True # only init async clients ), ) # type:ignore # Guardrail settings guardrails_v2: Optional[List[Dict]] = None if config is not None: guardrails_v2 = config.get("guardrails", None) if guardrails_v2: init_guardrails_v2( all_guardrails=guardrails_v2, config_file_path=config_file_path ) return router, router.get_model_list(), general_settings def _load_alerting_settings(self, general_settings: dict): """ Initialize alerting settings """ from litellm.litellm_core_utils.litellm_logging import ( _init_custom_logger_compatible_class, ) _alerting_callbacks = general_settings.get("alerting", None) verbose_proxy_logger.debug(f"_alerting_callbacks: {general_settings}") if _alerting_callbacks is None: return for _alert in _alerting_callbacks: if _alert == "slack": # [OLD] v0 implementation proxy_logging_obj.update_values( alerting=general_settings.get("alerting", None), alerting_threshold=general_settings.get("alerting_threshold", 600), alert_types=general_settings.get("alert_types", None), alert_to_webhook_url=general_settings.get( "alert_to_webhook_url", None ), alerting_args=general_settings.get("alerting_args", None), redis_cache=redis_usage_cache, ) else: # [NEW] v1 implementation - init as a custom logger if _alert in litellm._known_custom_logger_compatible_callbacks: _logger = _init_custom_logger_compatible_class( logging_integration=_alert, internal_usage_cache=None, llm_router=None, custom_logger_init_args={ "alerting_args": general_settings.get("alerting_args", None) }, ) if _logger is not None: litellm.logging_callback_manager.add_litellm_callback(_logger) pass def initialize_secret_manager(self, key_management_system: Optional[str]): """ Initialize the relevant secret manager if `key_management_system` is provided """ if key_management_system is not None: if key_management_system == KeyManagementSystem.AZURE_KEY_VAULT.value: ### LOAD FROM AZURE KEY VAULT ### load_from_azure_key_vault(use_azure_key_vault=True) elif key_management_system == KeyManagementSystem.GOOGLE_KMS.value: ### LOAD FROM GOOGLE KMS ### load_google_kms(use_google_kms=True) elif ( key_management_system == KeyManagementSystem.AWS_SECRET_MANAGER.value # noqa: F405 ): from litellm.secret_managers.aws_secret_manager_v2 import ( AWSSecretsManagerV2, ) AWSSecretsManagerV2.load_aws_secret_manager(use_aws_secret_manager=True) elif key_management_system == KeyManagementSystem.AWS_KMS.value: load_aws_kms(use_aws_kms=True) elif ( key_management_system == KeyManagementSystem.GOOGLE_SECRET_MANAGER.value ): from litellm.secret_managers.google_secret_manager import ( GoogleSecretManager, ) GoogleSecretManager() elif key_management_system == KeyManagementSystem.HASHICORP_VAULT.value: from litellm.secret_managers.hashicorp_secret_manager import ( HashicorpSecretManager, ) HashicorpSecretManager() else: raise ValueError("Invalid Key Management System selected") def get_model_info_with_id(self, model, db_model=False) -> RouterModelInfo: """ Common logic across add + delete router models Parameters: - deployment - db_model -> flag for differentiating model stored in db vs. config -> used on UI Return model info w/ id """ _id: Optional[str] = getattr(model, "model_id", None) if _id is not None: model.model_info["id"] = _id model.model_info["db_model"] = True if premium_user is True: # seeing "created_at", "updated_at", "created_by", "updated_by" is a LiteLLM Enterprise Feature model.model_info["created_at"] = getattr(model, "created_at", None) model.model_info["updated_at"] = getattr(model, "updated_at", None) model.model_info["created_by"] = getattr(model, "created_by", None) model.model_info["updated_by"] = getattr(model, "updated_by", None) if model.model_info is not None and isinstance(model.model_info, dict): if "id" not in model.model_info: model.model_info["id"] = model.model_id if "db_model" in model.model_info and model.model_info["db_model"] is False: model.model_info["db_model"] = db_model _model_info = RouterModelInfo(**model.model_info) else: _model_info = RouterModelInfo(id=model.model_id, db_model=db_model) return _model_info async def _delete_deployment(self, db_models: list) -> int: """ (Helper function of add deployment) -> combined to reduce prisma db calls - Create all up list of model id's (db + config) - Compare all up list to router model id's - Remove any that are missing Return: - int - returns number of deleted deployments """ global user_config_file_path, llm_router combined_id_list = [] ## BASE CASES ## # if llm_router is None or db_models is empty, return 0 if llm_router is None or len(db_models) == 0: return 0 ## DB MODELS ## for m in db_models: model_info = self.get_model_info_with_id(model=m) if model_info.id is not None: combined_id_list.append(model_info.id) ## CONFIG MODELS ## config = await self.get_config(config_file_path=user_config_file_path) model_list = config.get("model_list", None) if model_list: for model in model_list: ### LOAD FROM os.environ/ ### for k, v in model["litellm_params"].items(): if isinstance(v, str) and v.startswith("os.environ/"): model["litellm_params"][k] = get_secret(v) ## check if they have model-id's ## model_id = model.get("model_info", {}).get("id", None) if model_id is None: ## else - generate stable id's ## model_id = llm_router._generate_model_id( model_group=model["model_name"], litellm_params=model["litellm_params"], ) combined_id_list.append(model_id) # ADD CONFIG MODEL TO COMBINED LIST router_model_ids = llm_router.get_model_ids() # Check for model IDs in llm_router not present in combined_id_list and delete them deleted_deployments = 0 for model_id in router_model_ids: if model_id not in combined_id_list: is_deleted = llm_router.delete_deployment(id=model_id) if is_deleted is not None: deleted_deployments += 1 return deleted_deployments def _add_deployment(self, db_models: list) -> int: """ Iterate through db models for any not in router - add them. Return - number of deployments added """ import base64 if master_key is None or not isinstance(master_key, str): raise Exception( f"Master key is not initialized or formatted. master_key={master_key}" ) if llm_router is None: return 0 added_models = 0 ## ADD MODEL LOGIC for m in db_models: _litellm_params = m.litellm_params if isinstance(_litellm_params, dict): # decrypt values for k, v in _litellm_params.items(): if isinstance(v, str): # decrypt value _value = decrypt_value_helper(value=v) if _value is None: raise Exception("Unable to decrypt value={}".format(v)) # sanity check if string > size 0 if len(_value) > 0: _litellm_params[k] = _value _litellm_params = LiteLLM_Params(**_litellm_params) else: verbose_proxy_logger.error( f"Invalid model added to proxy db. Invalid litellm params. litellm_params={_litellm_params}" ) continue # skip to next model _model_info = self.get_model_info_with_id( model=m, db_model=True ) ## šŸ‘ˆ FLAG = True for db_models added = llm_router.upsert_deployment( deployment=Deployment( model_name=m.model_name, litellm_params=_litellm_params, model_info=_model_info, ) ) if added is not None: added_models += 1 return added_models async def _update_llm_router( self, new_models: list, proxy_logging_obj: ProxyLogging, ): global llm_router, llm_model_list, master_key, general_settings try: if llm_router is None and master_key is not None: verbose_proxy_logger.debug(f"len new_models: {len(new_models)}") _model_list: list = [] for m in new_models: _litellm_params = m.litellm_params if isinstance(_litellm_params, dict): # decrypt values for k, v in _litellm_params.items(): decrypted_value = decrypt_value_helper(value=v) _litellm_params[k] = decrypted_value _litellm_params = LiteLLM_Params(**_litellm_params) else: verbose_proxy_logger.error( f"Invalid model added to proxy db. Invalid litellm params. litellm_params={_litellm_params}" ) continue # skip to next model _model_info = self.get_model_info_with_id(model=m) _model_list.append( Deployment( model_name=m.model_name, litellm_params=_litellm_params, model_info=_model_info, ).to_json(exclude_none=True) ) if len(_model_list) > 0: verbose_proxy_logger.debug(f"_model_list: {_model_list}") llm_router = litellm.Router( model_list=_model_list, router_general_settings=RouterGeneralSettings( async_only_mode=True # only init async clients ), ) verbose_proxy_logger.debug(f"updated llm_router: {llm_router}") else: verbose_proxy_logger.debug(f"len new_models: {len(new_models)}") ## DELETE MODEL LOGIC await self._delete_deployment(db_models=new_models) ## ADD MODEL LOGIC self._add_deployment(db_models=new_models) except Exception as e: verbose_proxy_logger.exception( f"Error adding/deleting model to llm_router: {str(e)}" ) if llm_router is not None: llm_model_list = llm_router.get_model_list() # check if user set any callbacks in Config Table config_data = await proxy_config.get_config() self._add_callbacks_from_db_config(config_data) # we need to set env variables too self._add_environment_variables_from_db_config(config_data) # router settings await self._add_router_settings_from_db_config( config_data=config_data, llm_router=llm_router, prisma_client=prisma_client ) # general settings self._add_general_settings_from_db_config( config_data=config_data, general_settings=general_settings, proxy_logging_obj=proxy_logging_obj, ) def _add_callbacks_from_db_config(self, config_data: dict) -> None: """ Adds callbacks from DB config to litellm """ litellm_settings = config_data.get("litellm_settings", {}) or {} success_callbacks = litellm_settings.get("success_callback", None) failure_callbacks = litellm_settings.get("failure_callback", None) if success_callbacks is not None and isinstance(success_callbacks, list): for success_callback in success_callbacks: if ( success_callback in litellm._known_custom_logger_compatible_callbacks ): _add_custom_logger_callback_to_specific_event( success_callback, "success" ) elif success_callback not in litellm.success_callback: litellm.logging_callback_manager.add_litellm_success_callback( success_callback ) # Add failure callbacks from DB to litellm if failure_callbacks is not None and isinstance(failure_callbacks, list): for failure_callback in failure_callbacks: if ( failure_callback in litellm._known_custom_logger_compatible_callbacks ): _add_custom_logger_callback_to_specific_event( failure_callback, "failure" ) elif failure_callback not in litellm.failure_callback: litellm.logging_callback_manager.add_litellm_failure_callback( failure_callback ) def _add_environment_variables_from_db_config(self, config_data: dict) -> None: """ Adds environment variables from DB config to litellm """ environment_variables = config_data.get("environment_variables", {}) self._decrypt_and_set_db_env_variables(environment_variables) def _decrypt_and_set_db_env_variables(self, environment_variables: dict) -> None: """ Decrypts a dictionary of environment variables and then sets them in the environment Args: environment_variables: dict - dictionary of environment variables to decrypt and set eg. `{"LANGFUSE_PUBLIC_KEY": "kFiKa1VZukMmD8RB6WXB9F......."}` """ for k, v in environment_variables.items(): try: decrypted_value = decrypt_value_helper(value=v) if decrypted_value is not None: os.environ[k] = decrypted_value except Exception as e: verbose_proxy_logger.error( "Error setting env variable: %s - %s", k, str(e) ) async def _add_router_settings_from_db_config( self, config_data: dict, llm_router: Optional[Router], prisma_client: Optional[PrismaClient], ) -> None: """ Adds router settings from DB config to litellm proxy """ if llm_router is not None and prisma_client is not None: db_router_settings = await prisma_client.db.litellm_config.find_first( where={"param_name": "router_settings"} ) if ( db_router_settings is not None and db_router_settings.param_value is not None ): _router_settings = db_router_settings.param_value llm_router.update_settings(**_router_settings) def _add_general_settings_from_db_config( self, config_data: dict, general_settings: dict, proxy_logging_obj: ProxyLogging ) -> None: """ Adds general settings from DB config to litellm proxy Args: config_data: dict general_settings: dict - global general_settings currently in use proxy_logging_obj: ProxyLogging """ _general_settings = config_data.get("general_settings", {}) if "alerting" in _general_settings: if ( general_settings is not None and general_settings.get("alerting", None) is not None and isinstance(general_settings["alerting"], list) and _general_settings.get("alerting", None) is not None and isinstance(_general_settings["alerting"], list) ): verbose_proxy_logger.debug( "Overriding Default 'alerting' values with db 'alerting' values." ) general_settings["alerting"] = _general_settings[ "alerting" ] # override yaml values with db proxy_logging_obj.alerting = general_settings["alerting"] proxy_logging_obj.slack_alerting_instance.alerting = general_settings[ "alerting" ] elif general_settings is None: general_settings = {} general_settings["alerting"] = _general_settings["alerting"] proxy_logging_obj.alerting = general_settings["alerting"] proxy_logging_obj.slack_alerting_instance.alerting = general_settings[ "alerting" ] elif isinstance(general_settings, dict): general_settings["alerting"] = _general_settings["alerting"] proxy_logging_obj.alerting = general_settings["alerting"] proxy_logging_obj.slack_alerting_instance.alerting = general_settings[ "alerting" ] if "alert_types" in _general_settings: general_settings["alert_types"] = _general_settings["alert_types"] proxy_logging_obj.alert_types = general_settings["alert_types"] proxy_logging_obj.slack_alerting_instance.update_values( alert_types=general_settings["alert_types"], llm_router=llm_router ) if "alert_to_webhook_url" in _general_settings: general_settings["alert_to_webhook_url"] = _general_settings[ "alert_to_webhook_url" ] proxy_logging_obj.slack_alerting_instance.update_values( alert_to_webhook_url=general_settings["alert_to_webhook_url"], llm_router=llm_router, ) async def _update_general_settings(self, db_general_settings: Optional[Json]): """ Pull from DB, read general settings value """ global general_settings if db_general_settings is None: return _general_settings = dict(db_general_settings) ## MAX PARALLEL REQUESTS ## if "max_parallel_requests" in _general_settings: general_settings["max_parallel_requests"] = _general_settings[ "max_parallel_requests" ] if "global_max_parallel_requests" in _general_settings: general_settings["global_max_parallel_requests"] = _general_settings[ "global_max_parallel_requests" ] ## ALERTING ARGS ## if "alerting_args" in _general_settings: general_settings["alerting_args"] = _general_settings["alerting_args"] proxy_logging_obj.slack_alerting_instance.update_values( alerting_args=general_settings["alerting_args"], ) ## PASS-THROUGH ENDPOINTS ## if "pass_through_endpoints" in _general_settings: general_settings["pass_through_endpoints"] = _general_settings[ "pass_through_endpoints" ] await initialize_pass_through_endpoints( pass_through_endpoints=general_settings["pass_through_endpoints"] ) def _update_config_fields( self, current_config: dict, param_name: Literal[ "general_settings", "router_settings", "litellm_settings", "environment_variables", ], db_param_value: Any, ) -> dict: """ Updates the config fields with the new values from the DB Args: current_config (dict): Current configuration dictionary to update param_name (Literal): Name of the parameter to update db_param_value (Any): New value from the database Returns: dict: Updated configuration dictionary """ if param_name == "environment_variables": self._decrypt_and_set_db_env_variables(db_param_value) return current_config # If param doesn't exist in config, add it if param_name not in current_config: current_config[param_name] = db_param_value return current_config # For dictionary values, update only non-empty values if isinstance(current_config[param_name], dict): # Only keep non None values from db_param_value non_empty_values = {k: v for k, v in db_param_value.items() if v} # Update the config with non-empty values current_config[param_name].update(non_empty_values) else: current_config[param_name] = db_param_value return current_config async def _update_config_from_db( self, prisma_client: PrismaClient, config: dict, store_model_in_db: Optional[bool], ): if store_model_in_db is not True: verbose_proxy_logger.info( "'store_model_in_db' is not True, skipping db updates" ) return config _tasks = [] keys = [ "general_settings", "router_settings", "litellm_settings", "environment_variables", ] for k in keys: response = prisma_client.get_generic_data( key="param_name", value=k, table_name="config" ) _tasks.append(response) responses = await asyncio.gather(*_tasks) for response in responses: if response is None: continue param_name = getattr(response, "param_name", None) param_value = getattr(response, "param_value", None) verbose_proxy_logger.debug( f"param_name={param_name}, param_value={param_value}" ) if param_name is not None and param_value is not None: config = self._update_config_fields( current_config=config, param_name=param_name, db_param_value=param_value, ) return config async def _get_models_from_db(self, prisma_client: PrismaClient) -> list: try: new_models = await prisma_client.db.litellm_proxymodeltable.find_many() except Exception as e: verbose_proxy_logger.exception( "litellm.proxy_server.py::add_deployment() - Error getting new models from DB - {}".format( str(e) ) ) new_models = [] return new_models async def add_deployment( self, prisma_client: PrismaClient, proxy_logging_obj: ProxyLogging, ): """ - Check db for new models - Check if model id's in router already - If not, add to router """ global llm_router, llm_model_list, master_key, general_settings try: if master_key is None or not isinstance(master_key, str): raise ValueError( f"Master key is not initialized or formatted. master_key={master_key}" ) new_models = await self._get_models_from_db(prisma_client=prisma_client) # update llm router await self._update_llm_router( new_models=new_models, proxy_logging_obj=proxy_logging_obj ) db_general_settings = await prisma_client.db.litellm_config.find_first( where={"param_name": "general_settings"} ) # update general settings if db_general_settings is not None: await self._update_general_settings( db_general_settings=db_general_settings.param_value, ) except Exception as e: verbose_proxy_logger.exception( "litellm.proxy.proxy_server.py::ProxyConfig:add_deployment - {}".format( str(e) ) ) proxy_config = ProxyConfig() def save_worker_config(**data): import json os.environ["WORKER_CONFIG"] = json.dumps(data) async def initialize( # noqa: PLR0915 model=None, alias=None, api_base=None, api_version=None, debug=False, detailed_debug=False, temperature=None, max_tokens=None, request_timeout=600, max_budget=None, telemetry=False, drop_params=True, add_function_to_prompt=True, headers=None, save=False, use_queue=False, config=None, ): global user_model, user_api_base, user_debug, user_detailed_debug, user_user_max_tokens, user_request_timeout, user_temperature, user_telemetry, user_headers, experimental, llm_model_list, llm_router, general_settings, master_key, user_custom_auth, prisma_client if os.getenv("LITELLM_DONT_SHOW_FEEDBACK_BOX", "").lower() != "true": generate_feedback_box() user_model = model user_debug = debug if debug is True: # this needs to be first, so users can see Router init debugg import logging from litellm._logging import ( verbose_logger, verbose_proxy_logger, verbose_router_logger, ) # this must ALWAYS remain logging.INFO, DO NOT MODIFY THIS verbose_logger.setLevel(level=logging.INFO) # sets package logs to info verbose_router_logger.setLevel(level=logging.INFO) # set router logs to info verbose_proxy_logger.setLevel(level=logging.INFO) # set proxy logs to info if detailed_debug is True: import logging from litellm._logging import ( verbose_logger, verbose_proxy_logger, verbose_router_logger, ) verbose_logger.setLevel(level=logging.DEBUG) # set package log to debug verbose_router_logger.setLevel(level=logging.DEBUG) # set router logs to debug verbose_proxy_logger.setLevel(level=logging.DEBUG) # set proxy logs to debug elif debug is False and detailed_debug is False: # users can control proxy debugging using env variable = 'LITELLM_LOG' litellm_log_setting = os.environ.get("LITELLM_LOG", "") if litellm_log_setting is not None: if litellm_log_setting.upper() == "INFO": import logging from litellm._logging import verbose_proxy_logger, verbose_router_logger # this must ALWAYS remain logging.INFO, DO NOT MODIFY THIS verbose_router_logger.setLevel( level=logging.INFO ) # set router logs to info verbose_proxy_logger.setLevel( level=logging.INFO ) # set proxy logs to info elif litellm_log_setting.upper() == "DEBUG": import logging from litellm._logging import verbose_proxy_logger, verbose_router_logger verbose_router_logger.setLevel( level=logging.DEBUG ) # set router logs to info verbose_proxy_logger.setLevel( level=logging.DEBUG ) # set proxy logs to debug dynamic_config = {"general": {}, user_model: {}} if config: ( llm_router, llm_model_list, general_settings, ) = await proxy_config.load_config(router=llm_router, config_file_path=config) if headers: # model-specific param user_headers = headers dynamic_config[user_model]["headers"] = headers if api_base: # model-specific param user_api_base = api_base dynamic_config[user_model]["api_base"] = api_base if api_version: os.environ["AZURE_API_VERSION"] = ( api_version # set this for azure - litellm can read this from the env ) if max_tokens: # model-specific param dynamic_config[user_model]["max_tokens"] = max_tokens if temperature: # model-specific param user_temperature = temperature dynamic_config[user_model]["temperature"] = temperature if request_timeout: user_request_timeout = request_timeout dynamic_config[user_model]["request_timeout"] = request_timeout if alias: # model-specific param dynamic_config[user_model]["alias"] = alias if drop_params is True: # litellm-specific param litellm.drop_params = True dynamic_config["general"]["drop_params"] = True if add_function_to_prompt is True: # litellm-specific param litellm.add_function_to_prompt = True dynamic_config["general"]["add_function_to_prompt"] = True if max_budget: # litellm-specific param litellm.max_budget = max_budget dynamic_config["general"]["max_budget"] = max_budget if experimental: pass user_telemetry = telemetry # for streaming def data_generator(response): verbose_proxy_logger.debug("inside generator") for chunk in response: verbose_proxy_logger.debug("returned chunk: %s", chunk) try: yield f"data: {json.dumps(chunk.dict())}\n\n" except Exception: yield f"data: {json.dumps(chunk)}\n\n" async def async_assistants_data_generator( response, user_api_key_dict: UserAPIKeyAuth, request_data: dict ): verbose_proxy_logger.debug("inside generator") try: time.time() async with response as chunk: ### CALL HOOKS ### - modify outgoing data chunk = await proxy_logging_obj.async_post_call_streaming_hook( user_api_key_dict=user_api_key_dict, response=chunk ) # chunk = chunk.model_dump_json(exclude_none=True) async for c in chunk: # type: ignore c = c.model_dump_json(exclude_none=True) try: yield f"data: {c}\n\n" except Exception as e: yield f"data: {str(e)}\n\n" # Streaming is done, yield the [DONE] chunk done_message = "[DONE]" yield f"data: {done_message}\n\n" except Exception as e: verbose_proxy_logger.exception( "litellm.proxy.proxy_server.async_assistants_data_generator(): Exception occured - {}".format( str(e) ) ) await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=request_data, ) verbose_proxy_logger.debug( f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`" ) if isinstance(e, HTTPException): raise e else: error_traceback = traceback.format_exc() error_msg = f"{str(e)}\n\n{error_traceback}" proxy_exception = ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) error_returned = json.dumps({"error": proxy_exception.to_dict()}) yield f"data: {error_returned}\n\n" async def async_data_generator( response, user_api_key_dict: UserAPIKeyAuth, request_data: dict ): verbose_proxy_logger.debug("inside generator") try: time.time() async for chunk in response: verbose_proxy_logger.debug( "async_data_generator: received streaming chunk - {}".format(chunk) ) ### CALL HOOKS ### - modify outgoing data chunk = await proxy_logging_obj.async_post_call_streaming_hook( user_api_key_dict=user_api_key_dict, response=chunk ) if isinstance(chunk, BaseModel): chunk = chunk.model_dump_json(exclude_none=True, exclude_unset=True) try: yield f"data: {chunk}\n\n" except Exception as e: yield f"data: {str(e)}\n\n" # Streaming is done, yield the [DONE] chunk done_message = "[DONE]" yield f"data: {done_message}\n\n" except Exception as e: verbose_proxy_logger.exception( "litellm.proxy.proxy_server.async_data_generator(): Exception occured - {}".format( str(e) ) ) await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=request_data, ) verbose_proxy_logger.debug( f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`" ) if isinstance(e, HTTPException): raise e else: error_traceback = traceback.format_exc() error_msg = f"{str(e)}\n\n{error_traceback}" proxy_exception = ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) error_returned = json.dumps({"error": proxy_exception.to_dict()}) yield f"data: {error_returned}\n\n" async def async_data_generator_anthropic( response, user_api_key_dict: UserAPIKeyAuth, request_data: dict ): verbose_proxy_logger.debug("inside generator") try: time.time() async for chunk in response: verbose_proxy_logger.debug( "async_data_generator: received streaming chunk - {}".format(chunk) ) ### CALL HOOKS ### - modify outgoing data chunk = await proxy_logging_obj.async_post_call_streaming_hook( user_api_key_dict=user_api_key_dict, response=chunk ) event_type = chunk.get("type") try: yield f"event: {event_type}\ndata:{json.dumps(chunk)}\n\n" except Exception as e: yield f"event: {event_type}\ndata:{str(e)}\n\n" except Exception as e: verbose_proxy_logger.exception( "litellm.proxy.proxy_server.async_data_generator(): Exception occured - {}".format( str(e) ) ) await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=request_data, ) verbose_proxy_logger.debug( f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`" ) if isinstance(e, HTTPException): raise e else: error_traceback = traceback.format_exc() error_msg = f"{str(e)}\n\n{error_traceback}" proxy_exception = ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) error_returned = json.dumps({"error": proxy_exception.to_dict()}) yield f"data: {error_returned}\n\n" def select_data_generator( response, user_api_key_dict: UserAPIKeyAuth, request_data: dict ): return async_data_generator( response=response, user_api_key_dict=user_api_key_dict, request_data=request_data, ) def get_litellm_model_info(model: dict = {}): model_info = model.get("model_info", {}) model_to_lookup = model.get("litellm_params", {}).get("model", None) try: if "azure" in model_to_lookup: model_to_lookup = model_info.get("base_model", None) litellm_model_info = litellm.get_model_info(model_to_lookup) return litellm_model_info except Exception: # this should not block returning on /model/info # if litellm does not have info on the model it should return {} return {} def on_backoff(details): # The 'tries' key in the details dictionary contains the number of completed tries verbose_proxy_logger.debug("Backing off... this was attempt # %s", details["tries"]) def giveup(e): result = not ( isinstance(e, ProxyException) and getattr(e, "message", None) is not None and isinstance(e.message, str) and "Max parallel request limit reached" in e.message ) if ( general_settings.get("disable_retry_on_max_parallel_request_limit_error") is True ): return True # giveup if queuing max parallel request limits is disabled if result: verbose_proxy_logger.info(json.dumps({"event": "giveup", "exception": str(e)})) return result class ProxyStartupEvent: @classmethod def _initialize_startup_logging( cls, llm_router: Optional[Router], proxy_logging_obj: ProxyLogging, redis_usage_cache: Optional[RedisCache], ): """Initialize logging and alerting on startup""" ## COST TRACKING ## cost_tracking() ## Error Tracking ## error_tracking() proxy_logging_obj.startup_event( llm_router=llm_router, redis_usage_cache=redis_usage_cache ) @classmethod def _initialize_jwt_auth( cls, general_settings: dict, prisma_client: Optional[PrismaClient], user_api_key_cache: DualCache, ): """Initialize JWT auth on startup""" if general_settings.get("litellm_jwtauth", None) is not None: for k, v in general_settings["litellm_jwtauth"].items(): if isinstance(v, str) and v.startswith("os.environ/"): general_settings["litellm_jwtauth"][k] = get_secret(v) litellm_jwtauth = LiteLLM_JWTAuth(**general_settings["litellm_jwtauth"]) else: litellm_jwtauth = LiteLLM_JWTAuth() jwt_handler.update_environment( prisma_client=prisma_client, user_api_key_cache=user_api_key_cache, litellm_jwtauth=litellm_jwtauth, ) @classmethod def _add_master_key_hash_to_db( cls, master_key: str, prisma_client: PrismaClient, litellm_proxy_admin_name: str, general_settings: dict, ): """Adds master key hash to db for cost tracking""" if os.getenv("PROXY_ADMIN_ID", None) is not None: litellm_proxy_admin_name = os.getenv( "PROXY_ADMIN_ID", litellm_proxy_admin_name ) if general_settings.get("disable_adding_master_key_hash_to_db") is True: verbose_proxy_logger.info("Skipping writing master key hash to db") else: # add master key to db # add 'admin' user to db. Fixes https://github.com/BerriAI/litellm/issues/6206 task_1 = generate_key_helper_fn( request_type="user", duration=None, models=[], aliases={}, config={}, spend=0, token=master_key, user_id=litellm_proxy_admin_name, user_role=LitellmUserRoles.PROXY_ADMIN, query_type="update_data", update_key_values={"user_role": LitellmUserRoles.PROXY_ADMIN}, ) asyncio.create_task(task_1) @classmethod def _add_proxy_budget_to_db(cls, litellm_proxy_budget_name: str): """Adds a global proxy budget to db""" if litellm.budget_duration is None: raise Exception( "budget_duration not set on Proxy. budget_duration is required to use max_budget." ) # add proxy budget to db in the user table asyncio.create_task( generate_key_helper_fn( request_type="user", user_id=litellm_proxy_budget_name, duration=None, models=[], aliases={}, config={}, spend=0, max_budget=litellm.max_budget, budget_duration=litellm.budget_duration, query_type="update_data", update_key_values={ "max_budget": litellm.max_budget, "budget_duration": litellm.budget_duration, }, ) ) @classmethod async def initialize_scheduled_background_jobs( cls, general_settings: dict, prisma_client: PrismaClient, proxy_budget_rescheduler_min_time: int, proxy_budget_rescheduler_max_time: int, proxy_batch_write_at: int, proxy_logging_obj: ProxyLogging, ): """Initializes scheduled background jobs""" global store_model_in_db scheduler = AsyncIOScheduler() interval = random.randint( proxy_budget_rescheduler_min_time, proxy_budget_rescheduler_max_time ) # random interval, so multiple workers avoid resetting budget at the same time batch_writing_interval = random.randint( proxy_batch_write_at - 3, proxy_batch_write_at + 3 ) # random interval, so multiple workers avoid batch writing at the same time ### RESET BUDGET ### if general_settings.get("disable_reset_budget", False) is False: scheduler.add_job( reset_budget, "interval", seconds=interval, args=[prisma_client] ) ### UPDATE SPEND ### scheduler.add_job( update_spend, "interval", seconds=batch_writing_interval, args=[prisma_client, db_writer_client, proxy_logging_obj], ) ### ADD NEW MODELS ### store_model_in_db = ( get_secret_bool("STORE_MODEL_IN_DB", store_model_in_db) or store_model_in_db ) if store_model_in_db is True: scheduler.add_job( proxy_config.add_deployment, "interval", seconds=10, args=[prisma_client, proxy_logging_obj], ) # this will load all existing models on proxy startup await proxy_config.add_deployment( prisma_client=prisma_client, proxy_logging_obj=proxy_logging_obj ) if ( proxy_logging_obj is not None and proxy_logging_obj.slack_alerting_instance.alerting is not None and prisma_client is not None ): print("Alerting: Initializing Weekly/Monthly Spend Reports") # noqa ### Schedule weekly/monthly spend reports ### ### Schedule spend reports ### spend_report_frequency: str = ( general_settings.get("spend_report_frequency", "7d") or "7d" ) # Parse the frequency days = int(spend_report_frequency[:-1]) if spend_report_frequency[-1].lower() != "d": raise ValueError( "spend_report_frequency must be specified in days, e.g., '1d', '7d'" ) scheduler.add_job( proxy_logging_obj.slack_alerting_instance.send_weekly_spend_report, "interval", days=days, next_run_time=datetime.now() + timedelta(seconds=10), # Start 10 seconds from now args=[spend_report_frequency], ) scheduler.add_job( proxy_logging_obj.slack_alerting_instance.send_monthly_spend_report, "cron", day=1, ) # Beta Feature - only used when prometheus api is in .env if os.getenv("PROMETHEUS_URL"): from zoneinfo import ZoneInfo scheduler.add_job( proxy_logging_obj.slack_alerting_instance.send_fallback_stats_from_prometheus, "cron", hour=9, minute=0, timezone=ZoneInfo("America/Los_Angeles"), # Pacific Time ) await proxy_logging_obj.slack_alerting_instance.send_fallback_stats_from_prometheus() scheduler.start() @classmethod async def _setup_prisma_client( cls, database_url: Optional[str], proxy_logging_obj: ProxyLogging, user_api_key_cache: DualCache, ) -> Optional[PrismaClient]: """ - Sets up prisma client - Adds necessary views to proxy """ prisma_client: Optional[PrismaClient] = None if database_url is not None: try: prisma_client = PrismaClient( database_url=database_url, proxy_logging_obj=proxy_logging_obj ) except Exception as e: raise e await prisma_client.connect() ## Add necessary views to proxy ## asyncio.create_task( prisma_client.check_view_exists() ) # check if all necessary views exist. Don't block execution asyncio.create_task( prisma_client._set_spend_logs_row_count_in_proxy_state() ) # set the spend logs row count in proxy state. Don't block execution # run a health check to ensure the DB is ready if ( get_secret_bool("DISABLE_PRISMA_HEALTH_CHECK_ON_STARTUP", False) is not True ): await prisma_client.health_check() return prisma_client @classmethod def _init_dd_tracer(cls): """ Initialize dd tracer - if `USE_DDTRACE=true` in .env DD tracer is used to trace Python applications. Doc: https://docs.datadoghq.com/tracing/trace_collection/automatic_instrumentation/dd_libraries/python/ """ if get_secret_bool("USE_DDTRACE", False) is True: import ddtrace ddtrace.patch_all(logging=True, openai=False) #### API ENDPOINTS #### @router.get( "/v1/models", dependencies=[Depends(user_api_key_auth)], tags=["model management"] ) @router.get( "/models", dependencies=[Depends(user_api_key_auth)], tags=["model management"] ) # if project requires model list async def model_list( user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), return_wildcard_routes: Optional[bool] = False, ): """ Use `/model/info` - to get detailed model information, example - pricing, mode, etc. This is just for compatibility with openai projects like aider. """ global llm_model_list, general_settings, llm_router all_models = [] model_access_groups: Dict[str, List[str]] = defaultdict(list) ## CHECK IF MODEL RESTRICTIONS ARE SET AT KEY/TEAM LEVEL ## if llm_router is None: proxy_model_list = [] else: proxy_model_list = llm_router.get_model_names() model_access_groups = llm_router.get_model_access_groups() key_models = get_key_models( user_api_key_dict=user_api_key_dict, proxy_model_list=proxy_model_list, model_access_groups=model_access_groups, ) team_models = get_team_models( user_api_key_dict=user_api_key_dict, proxy_model_list=proxy_model_list, model_access_groups=model_access_groups, ) all_models = get_complete_model_list( key_models=key_models, team_models=team_models, proxy_model_list=proxy_model_list, user_model=user_model, infer_model_from_keys=general_settings.get("infer_model_from_keys", False), return_wildcard_routes=return_wildcard_routes, ) return dict( data=[ { "id": model, "object": "model", "created": 1677610602, "owned_by": "openai", } for model in all_models ], object="list", ) @router.post( "/v1/chat/completions", dependencies=[Depends(user_api_key_auth)], tags=["chat/completions"], ) @router.post( "/chat/completions", dependencies=[Depends(user_api_key_auth)], tags=["chat/completions"], ) @router.post( "/engines/{model:path}/chat/completions", dependencies=[Depends(user_api_key_auth)], tags=["chat/completions"], ) @router.post( "/openai/deployments/{model:path}/chat/completions", dependencies=[Depends(user_api_key_auth)], tags=["chat/completions"], responses={200: {"description": "Successful response"}, **ERROR_RESPONSES}, ) # azure compatible endpoint @backoff.on_exception( backoff.expo, Exception, # base exception to catch for the backoff max_tries=global_max_parallel_request_retries, # maximum number of retries max_time=global_max_parallel_request_retry_timeout, # maximum total time to retry for on_backoff=on_backoff, # specifying the function to call on backoff giveup=giveup, logger=verbose_proxy_logger, ) async def chat_completion( # noqa: PLR0915 request: Request, fastapi_response: Response, model: Optional[str] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Follows the exact same API spec as `OpenAI's Chat API https://platform.openai.com/docs/api-reference/chat` ```bash curl -X POST http://localhost:4000/v1/chat/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer sk-1234" \ -d '{ "model": "gpt-4o", "messages": [ { "role": "user", "content": "Hello!" } ] }' ``` """ global general_settings, user_debug, proxy_logging_obj, llm_model_list data = {} try: data = await _read_request_body(request=request) verbose_proxy_logger.debug( "Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)), ) data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) data["model"] = ( general_settings.get("completion_model", None) # server default or user_model # model name passed via cli args or model # for azure deployments or data["model"] # default passed in http request ) global user_temperature, user_request_timeout, user_max_tokens, user_api_base # override with user settings, these are params passed via cli if user_temperature: data["temperature"] = user_temperature if user_request_timeout: data["request_timeout"] = user_request_timeout if user_max_tokens: data["max_tokens"] = user_max_tokens if user_api_base: data["api_base"] = user_api_base ### MODEL ALIAS MAPPING ### # check if model name in model alias map # get the actual model name if isinstance(data["model"], str) and data["model"] in litellm.model_alias_map: data["model"] = litellm.model_alias_map[data["model"]] ### CALL HOOKS ### - modify/reject incoming data before calling the model data = await proxy_logging_obj.pre_call_hook( # type: ignore user_api_key_dict=user_api_key_dict, data=data, call_type="completion" ) ## LOGGING OBJECT ## - initialize logging object for logging success/failure events for call ## IMPORTANT Note: - initialize this before running pre-call checks. Ensures we log rejected requests to langfuse. data["litellm_call_id"] = request.headers.get( "x-litellm-call-id", str(uuid.uuid4()) ) logging_obj, data = litellm.utils.function_setup( original_function="acompletion", rules_obj=litellm.utils.Rules(), start_time=datetime.now(), **data, ) data["litellm_logging_obj"] = logging_obj tasks = [] tasks.append( proxy_logging_obj.during_call_hook( data=data, user_api_key_dict=user_api_key_dict, call_type="completion", ) ) ### ROUTE THE REQUEST ### # Do not change this - it should be a constant time fetch - ALWAYS llm_call = await route_request( data=data, route_type="acompletion", llm_router=llm_router, user_model=user_model, ) tasks.append(llm_call) # wait for call to end llm_responses = asyncio.gather( *tasks ) # run the moderation check in parallel to the actual llm api call responses = await llm_responses response = responses[1] hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" response_cost = hidden_params.get("response_cost", None) or "" fastest_response_batch_completion = hidden_params.get( "fastest_response_batch_completion", None ) additional_headers: dict = hidden_params.get("additional_headers", {}) or {} # Post Call Processing if llm_router is not None: data["deployment"] = llm_router.get_deployment(model_id=model_id) asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) if ( "stream" in data and data["stream"] is True ): # use generate_responses to stream responses custom_headers = get_custom_headers( user_api_key_dict=user_api_key_dict, call_id=logging_obj.litellm_call_id, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, response_cost=response_cost, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), fastest_response_batch_completion=fastest_response_batch_completion, request_data=data, hidden_params=hidden_params, **additional_headers, ) selected_data_generator = select_data_generator( response=response, user_api_key_dict=user_api_key_dict, request_data=data, ) return StreamingResponse( selected_data_generator, media_type="text/event-stream", headers=custom_headers, ) ### CALL HOOKS ### - modify outgoing data response = await proxy_logging_obj.post_call_success_hook( data=data, user_api_key_dict=user_api_key_dict, response=response ) hidden_params = ( getattr(response, "_hidden_params", {}) or {} ) # get any updated response headers additional_headers = hidden_params.get("additional_headers", {}) or {} fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, call_id=logging_obj.litellm_call_id, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, response_cost=response_cost, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), fastest_response_batch_completion=fastest_response_batch_completion, request_data=data, hidden_params=hidden_params, **additional_headers, ) ) await check_response_size_is_safe(response=response) return response except RejectedRequestError as e: _data = e.request_data await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=_data, ) _chat_response = litellm.ModelResponse() _chat_response.choices[0].message.content = e.message # type: ignore if data.get("stream", None) is not None and data["stream"] is True: _iterator = litellm.utils.ModelResponseIterator( model_response=_chat_response, convert_to_delta=True ) _streaming_response = litellm.CustomStreamWrapper( completion_stream=_iterator, model=data.get("model", ""), custom_llm_provider="cached_response", logging_obj=data.get("litellm_logging_obj", None), ) selected_data_generator = select_data_generator( response=_streaming_response, user_api_key_dict=user_api_key_dict, request_data=_data, ) return StreamingResponse( selected_data_generator, media_type="text/event-stream", ) _usage = litellm.Usage(prompt_tokens=0, completion_tokens=0, total_tokens=0) _chat_response.usage = _usage # type: ignore return _chat_response except Exception as e: verbose_proxy_logger.exception( f"litellm.proxy.proxy_server.chat_completion(): Exception occured - {str(e)}" ) await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) litellm_debug_info = getattr(e, "litellm_debug_info", "") verbose_proxy_logger.debug( "\033[1;31mAn error occurred: %s %s\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`", e, litellm_debug_info, ) timeout = getattr( e, "timeout", None ) # returns the timeout set by the wrapper. Used for testing if model-specific timeout are set correctly custom_headers = get_custom_headers( user_api_key_dict=user_api_key_dict, version=version, response_cost=0, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, timeout=timeout, ) headers = getattr(e, "headers", {}) or {} headers.update(custom_headers) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "detail", str(e)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), headers=headers, ) error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), headers=headers, ) @router.post( "/v1/completions", dependencies=[Depends(user_api_key_auth)], tags=["completions"] ) @router.post( "/completions", dependencies=[Depends(user_api_key_auth)], tags=["completions"] ) @router.post( "/engines/{model:path}/completions", dependencies=[Depends(user_api_key_auth)], tags=["completions"], ) @router.post( "/openai/deployments/{model:path}/completions", dependencies=[Depends(user_api_key_auth)], tags=["completions"], ) async def completion( # noqa: PLR0915 request: Request, fastapi_response: Response, model: Optional[str] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Follows the exact same API spec as `OpenAI's Completions API https://platform.openai.com/docs/api-reference/completions` ```bash curl -X POST http://localhost:4000/v1/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer sk-1234" \ -d '{ "model": "gpt-3.5-turbo-instruct", "prompt": "Once upon a time", "max_tokens": 50, "temperature": 0.7 }' ``` """ global user_temperature, user_request_timeout, user_max_tokens, user_api_base data = {} try: data = await _read_request_body(request=request) data["model"] = ( general_settings.get("completion_model", None) # server default or user_model # model name passed via cli args or model # for azure deployments or data["model"] # default passed in http request ) if user_model: data["model"] = user_model data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # override with user settings, these are params passed via cli if user_temperature: data["temperature"] = user_temperature if user_request_timeout: data["request_timeout"] = user_request_timeout if user_max_tokens: data["max_tokens"] = user_max_tokens if user_api_base: data["api_base"] = user_api_base ### MODEL ALIAS MAPPING ### # check if model name in model alias map # get the actual model name if data["model"] in litellm.model_alias_map: data["model"] = litellm.model_alias_map[data["model"]] ### CALL HOOKS ### - modify incoming data before calling the model data = await proxy_logging_obj.pre_call_hook( # type: ignore user_api_key_dict=user_api_key_dict, data=data, call_type="text_completion" ) ### ROUTE THE REQUESTs ### llm_call = await route_request( data=data, route_type="atext_completion", llm_router=llm_router, user_model=user_model, ) # Await the llm_response task response = await llm_call hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" response_cost = hidden_params.get("response_cost", None) or "" litellm_call_id = hidden_params.get("litellm_call_id", None) or "" ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) verbose_proxy_logger.debug("final response: %s", response) if ( "stream" in data and data["stream"] is True ): # use generate_responses to stream responses custom_headers = get_custom_headers( user_api_key_dict=user_api_key_dict, call_id=litellm_call_id, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, response_cost=response_cost, hidden_params=hidden_params, request_data=data, ) selected_data_generator = select_data_generator( response=response, user_api_key_dict=user_api_key_dict, request_data=data, ) return StreamingResponse( selected_data_generator, media_type="text/event-stream", headers=custom_headers, ) ### CALL HOOKS ### - modify outgoing data response = await proxy_logging_obj.post_call_success_hook( data=data, user_api_key_dict=user_api_key_dict, response=response # type: ignore ) fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, call_id=litellm_call_id, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, response_cost=response_cost, request_data=data, hidden_params=hidden_params, ) ) await check_response_size_is_safe(response=response) return response except RejectedRequestError as e: _data = e.request_data await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=_data, ) if _data.get("stream", None) is not None and _data["stream"] is True: _chat_response = litellm.ModelResponse() _usage = litellm.Usage( prompt_tokens=0, completion_tokens=0, total_tokens=0, ) _chat_response.usage = _usage # type: ignore _chat_response.choices[0].message.content = e.message # type: ignore _iterator = litellm.utils.ModelResponseIterator( model_response=_chat_response, convert_to_delta=True ) _streaming_response = litellm.TextCompletionStreamWrapper( completion_stream=_iterator, model=_data.get("model", ""), ) selected_data_generator = select_data_generator( response=_streaming_response, user_api_key_dict=user_api_key_dict, request_data=data, ) return StreamingResponse( selected_data_generator, media_type="text/event-stream", headers={}, ) else: _response = litellm.TextCompletionResponse() _response.choices[0].text = e.message return _response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.exception( "litellm.proxy.proxy_server.completion(): Exception occured - {}".format( str(e) ) ) error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.post( "/v1/embeddings", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse, tags=["embeddings"], ) @router.post( "/embeddings", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse, tags=["embeddings"], ) @router.post( "/engines/{model:path}/embeddings", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse, tags=["embeddings"], ) # azure compatible endpoint @router.post( "/openai/deployments/{model:path}/embeddings", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse, tags=["embeddings"], ) # azure compatible endpoint async def embeddings( # noqa: PLR0915 request: Request, fastapi_response: Response, model: Optional[str] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Follows the exact same API spec as `OpenAI's Embeddings API https://platform.openai.com/docs/api-reference/embeddings` ```bash curl -X POST http://localhost:4000/v1/embeddings \ -H "Content-Type: application/json" \ -H "Authorization: Bearer sk-1234" \ -d '{ "model": "text-embedding-ada-002", "input": "The quick brown fox jumps over the lazy dog" }' ``` """ global proxy_logging_obj data: Any = {} try: # Use orjson to parse JSON data, orjson speeds up requests significantly body = await request.body() data = orjson.loads(body) verbose_proxy_logger.debug( "Request received by LiteLLM:\n%s", json.dumps(data, indent=4), ) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) data["model"] = ( general_settings.get("embedding_model", None) # server default or user_model # model name passed via cli args or model # for azure deployments or data["model"] # default passed in http request ) if user_model: data["model"] = user_model ### MODEL ALIAS MAPPING ### # check if model name in model alias map # get the actual model name if data["model"] in litellm.model_alias_map: data["model"] = litellm.model_alias_map[data["model"]] router_model_names = llm_router.model_names if llm_router is not None else [] if ( "input" in data and isinstance(data["input"], list) and len(data["input"]) > 0 and isinstance(data["input"][0], list) and isinstance(data["input"][0][0], int) ): # check if array of tokens passed in # check if non-openai/azure model called - e.g. for langchain integration if llm_model_list is not None and data["model"] in router_model_names: for m in llm_model_list: if m["model_name"] == data["model"] and ( m["litellm_params"]["model"] in litellm.open_ai_embedding_models or m["litellm_params"]["model"].startswith("azure/") ): pass else: # non-openai/azure embedding model called with token input input_list = [] for i in data["input"]: input_list.append( litellm.decode(model="gpt-3.5-turbo", tokens=i) ) data["input"] = input_list break ### CALL HOOKS ### - modify incoming data / reject request before calling the model data = await proxy_logging_obj.pre_call_hook( user_api_key_dict=user_api_key_dict, data=data, call_type="embeddings" ) tasks = [] tasks.append( proxy_logging_obj.during_call_hook( data=data, user_api_key_dict=user_api_key_dict, call_type="embeddings", ) ) ## ROUTE TO CORRECT ENDPOINT ## llm_call = await route_request( data=data, route_type="aembedding", llm_router=llm_router, user_model=user_model, ) tasks.append(llm_call) # wait for call to end llm_responses = asyncio.gather( *tasks ) # run the moderation check in parallel to the actual llm api call responses = await llm_responses response = responses[1] ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" response_cost = hidden_params.get("response_cost", None) or "" litellm_call_id = hidden_params.get("litellm_call_id", None) or "" additional_headers: dict = hidden_params.get("additional_headers", {}) or {} fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, response_cost=response_cost, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), call_id=litellm_call_id, request_data=data, hidden_params=hidden_params, **additional_headers, ) ) await check_response_size_is_safe(response=response) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) litellm_debug_info = getattr(e, "litellm_debug_info", "") verbose_proxy_logger.debug( "\033[1;31mAn error occurred: %s %s\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`", e, litellm_debug_info, ) verbose_proxy_logger.exception( "litellm.proxy.proxy_server.embeddings(): Exception occured - {}".format( str(e) ) ) if isinstance(e, HTTPException): message = get_error_message_str(e) raise ProxyException( message=message, type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.post( "/v1/images/generations", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse, tags=["images"], ) @router.post( "/images/generations", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse, tags=["images"], ) async def image_generation( request: Request, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): global proxy_logging_obj data = {} try: # Use orjson to parse JSON data, orjson speeds up requests significantly body = await request.body() data = orjson.loads(body) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) data["model"] = ( general_settings.get("image_generation_model", None) # server default or user_model # model name passed via cli args or data["model"] # default passed in http request ) if user_model: data["model"] = user_model ### MODEL ALIAS MAPPING ### # check if model name in model alias map # get the actual model name if data["model"] in litellm.model_alias_map: data["model"] = litellm.model_alias_map[data["model"]] ### CALL HOOKS ### - modify incoming data / reject request before calling the model data = await proxy_logging_obj.pre_call_hook( user_api_key_dict=user_api_key_dict, data=data, call_type="image_generation" ) ## ROUTE TO CORRECT ENDPOINT ## llm_call = await route_request( data=data, route_type="aimage_generation", llm_router=llm_router, user_model=user_model, ) response = await llm_call ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" response_cost = hidden_params.get("response_cost", None) or "" litellm_call_id = hidden_params.get("litellm_call_id", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, response_cost=response_cost, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), call_id=litellm_call_id, request_data=data, hidden_params=hidden_params, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.image_generation(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.post( "/v1/audio/speech", dependencies=[Depends(user_api_key_auth)], tags=["audio"], ) @router.post( "/audio/speech", dependencies=[Depends(user_api_key_auth)], tags=["audio"], ) async def audio_speech( request: Request, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Same params as: https://platform.openai.com/docs/api-reference/audio/createSpeech """ global proxy_logging_obj data: Dict = {} try: # Use orjson to parse JSON data, orjson speeds up requests significantly body = await request.body() data = orjson.loads(body) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) if data.get("user", None) is None and user_api_key_dict.user_id is not None: data["user"] = user_api_key_dict.user_id if user_model: data["model"] = user_model ### CALL HOOKS ### - modify incoming data / reject request before calling the model data = await proxy_logging_obj.pre_call_hook( user_api_key_dict=user_api_key_dict, data=data, call_type="image_generation" ) ## ROUTE TO CORRECT ENDPOINT ## llm_call = await route_request( data=data, route_type="aspeech", llm_router=llm_router, user_model=user_model, ) response = await llm_call ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" response_cost = hidden_params.get("response_cost", None) or "" litellm_call_id = hidden_params.get("litellm_call_id", None) or "" # Printing each chunk size async def generate(_response: HttpxBinaryResponseContent): _generator = await _response.aiter_bytes(chunk_size=1024) async for chunk in _generator: yield chunk custom_headers = get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, response_cost=response_cost, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), fastest_response_batch_completion=None, call_id=litellm_call_id, request_data=data, hidden_params=hidden_params, ) select_data_generator( response=response, user_api_key_dict=user_api_key_dict, request_data=data, ) return StreamingResponse( generate(response), media_type="audio/mpeg", headers=custom_headers # type: ignore ) except Exception as e: verbose_proxy_logger.error( "litellm.proxy.proxy_server.audio_speech(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) raise e @router.post( "/v1/audio/transcriptions", dependencies=[Depends(user_api_key_auth)], tags=["audio"], ) @router.post( "/audio/transcriptions", dependencies=[Depends(user_api_key_auth)], tags=["audio"], ) async def audio_transcriptions( request: Request, fastapi_response: Response, file: UploadFile = File(...), user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Same params as: https://platform.openai.com/docs/api-reference/audio/createTranscription?lang=curl """ global proxy_logging_obj data: Dict = {} try: # Use orjson to parse JSON data, orjson speeds up requests significantly form_data = await request.form() data = {key: value for key, value in form_data.items() if key != "file"} # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) if data.get("user", None) is None and user_api_key_dict.user_id is not None: data["user"] = user_api_key_dict.user_id data["model"] = ( general_settings.get("moderation_model", None) # server default or user_model # model name passed via cli args or data["model"] # default passed in http request ) if user_model: data["model"] = user_model router_model_names = llm_router.model_names if llm_router is not None else [] if file.filename is None: raise ProxyException( message="File name is None. Please check your file name", code=status.HTTP_400_BAD_REQUEST, type="bad_request", param="file", ) # Check if File can be read in memory before reading check_file_size_under_limit( request_data=data, file=file, router_model_names=router_model_names, ) file_content = await file.read() file_object = io.BytesIO(file_content) file_object.name = file.filename data["file"] = file_object try: ### CALL HOOKS ### - modify incoming data / reject request before calling the model data = await proxy_logging_obj.pre_call_hook( user_api_key_dict=user_api_key_dict, data=data, call_type="audio_transcription", ) ## ROUTE TO CORRECT ENDPOINT ## llm_call = await route_request( data=data, route_type="atranscription", llm_router=llm_router, user_model=user_model, ) response = await llm_call except Exception as e: raise HTTPException(status_code=500, detail=str(e)) finally: file_object.close() # close the file read in by io library ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" response_cost = hidden_params.get("response_cost", None) or "" litellm_call_id = hidden_params.get("litellm_call_id", None) or "" additional_headers: dict = hidden_params.get("additional_headers", {}) or {} fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, response_cost=response_cost, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), call_id=litellm_call_id, request_data=data, hidden_params=hidden_params, **additional_headers, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.exception( "litellm.proxy.proxy_server.audio_transcription(): Exception occured - {}".format( str(e) ) ) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) ###################################################################### # /v1/realtime Endpoints ###################################################################### from fastapi import FastAPI, WebSocket, WebSocketDisconnect from litellm import _arealtime @app.websocket("/v1/realtime") @app.websocket("/realtime") async def websocket_endpoint( websocket: WebSocket, model: str, user_api_key_dict=Depends(user_api_key_auth_websocket), ): import websockets await websocket.accept() data = { "model": model, "websocket": websocket, } ### ROUTE THE REQUEST ### try: llm_call = await route_request( data=data, route_type="_arealtime", llm_router=llm_router, user_model=user_model, ) await llm_call except websockets.exceptions.InvalidStatusCode as e: # type: ignore verbose_proxy_logger.exception("Invalid status code") await websocket.close(code=e.status_code, reason="Invalid status code") except Exception: verbose_proxy_logger.exception("Internal server error") await websocket.close(code=1011, reason="Internal server error") ###################################################################### # /v1/assistant Endpoints ###################################################################### @router.get( "/v1/assistants", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) @router.get( "/assistants", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) async def get_assistants( request: Request, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Returns a list of assistants. API Reference docs - https://platform.openai.com/docs/api-reference/assistants/listAssistants """ global proxy_logging_obj data: Dict = {} try: # Use orjson to parse JSON data, orjson speeds up requests significantly await request.body() # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch if llm_router is None: raise HTTPException( status_code=500, detail={"error": CommonProxyErrors.no_llm_router.value} ) response = await llm_router.aget_assistants(**data) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, hidden_params=hidden_params, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.get_assistants(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.post( "/v1/assistants", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) @router.post( "/assistants", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) async def create_assistant( request: Request, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Create assistant API Reference docs - https://platform.openai.com/docs/api-reference/assistants/createAssistant """ global proxy_logging_obj data = {} # ensure data always dict try: # Use orjson to parse JSON data, orjson speeds up requests significantly body = await request.body() data = orjson.loads(body) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch if llm_router is None: raise HTTPException( status_code=500, detail={"error": CommonProxyErrors.no_llm_router.value} ) response = await llm_router.acreate_assistants(**data) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, hidden_params=hidden_params, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.create_assistant(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.delete( "/v1/assistants/{assistant_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) @router.delete( "/assistants/{assistant_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) async def delete_assistant( request: Request, assistant_id: str, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Delete assistant API Reference docs - https://platform.openai.com/docs/api-reference/assistants/createAssistant """ global proxy_logging_obj data: Dict = {} try: # Use orjson to parse JSON data, orjson speeds up requests significantly # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch if llm_router is None: raise HTTPException( status_code=500, detail={"error": CommonProxyErrors.no_llm_router.value} ) response = await llm_router.adelete_assistant(assistant_id=assistant_id, **data) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, hidden_params=hidden_params, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.delete_assistant(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.post( "/v1/threads", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) @router.post( "/threads", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) async def create_threads( request: Request, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Create a thread. API Reference - https://platform.openai.com/docs/api-reference/threads/createThread """ global proxy_logging_obj data: Dict = {} try: # Use orjson to parse JSON data, orjson speeds up requests significantly await request.body() # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch if llm_router is None: raise HTTPException( status_code=500, detail={"error": CommonProxyErrors.no_llm_router.value} ) response = await llm_router.acreate_thread(**data) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, hidden_params=hidden_params, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.create_threads(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.get( "/v1/threads/{thread_id}", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) @router.get( "/threads/{thread_id}", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) async def get_thread( request: Request, thread_id: str, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Retrieves a thread. API Reference - https://platform.openai.com/docs/api-reference/threads/getThread """ global proxy_logging_obj data: Dict = {} try: # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch if llm_router is None: raise HTTPException( status_code=500, detail={"error": CommonProxyErrors.no_llm_router.value} ) response = await llm_router.aget_thread(thread_id=thread_id, **data) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, hidden_params=hidden_params, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.get_thread(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.post( "/v1/threads/{thread_id}/messages", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) @router.post( "/threads/{thread_id}/messages", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) async def add_messages( request: Request, thread_id: str, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Create a message. API Reference - https://platform.openai.com/docs/api-reference/messages/createMessage """ global proxy_logging_obj data: Dict = {} try: # Use orjson to parse JSON data, orjson speeds up requests significantly body = await request.body() data = orjson.loads(body) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch if llm_router is None: raise HTTPException( status_code=500, detail={"error": CommonProxyErrors.no_llm_router.value} ) response = await llm_router.a_add_message(thread_id=thread_id, **data) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, hidden_params=hidden_params, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.add_messages(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.get( "/v1/threads/{thread_id}/messages", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) @router.get( "/threads/{thread_id}/messages", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) async def get_messages( request: Request, thread_id: str, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Returns a list of messages for a given thread. API Reference - https://platform.openai.com/docs/api-reference/messages/listMessages """ global proxy_logging_obj data: Dict = {} try: # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch if llm_router is None: raise HTTPException( status_code=500, detail={"error": CommonProxyErrors.no_llm_router.value} ) response = await llm_router.aget_messages(thread_id=thread_id, **data) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, hidden_params=hidden_params, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.get_messages(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.post( "/v1/threads/{thread_id}/runs", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) @router.post( "/threads/{thread_id}/runs", dependencies=[Depends(user_api_key_auth)], tags=["assistants"], ) async def run_thread( request: Request, thread_id: str, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Create a run. API Reference: https://platform.openai.com/docs/api-reference/runs/createRun """ global proxy_logging_obj data: Dict = {} try: body = await request.body() data = orjson.loads(body) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch if llm_router is None: raise HTTPException( status_code=500, detail={"error": CommonProxyErrors.no_llm_router.value} ) response = await llm_router.arun_thread(thread_id=thread_id, **data) if ( "stream" in data and data["stream"] is True ): # use generate_responses to stream responses return StreamingResponse( async_assistants_data_generator( user_api_key_dict=user_api_key_dict, response=response, request_data=data, ), media_type="text/event-stream", ) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, hidden_params=hidden_params, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.run_thread(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.post( "/v1/moderations", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse, tags=["moderations"], ) @router.post( "/moderations", dependencies=[Depends(user_api_key_auth)], response_class=ORJSONResponse, tags=["moderations"], ) async def moderations( request: Request, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ The moderations endpoint is a tool you can use to check whether content complies with an LLM Providers policies. Quick Start ``` curl --location 'http://0.0.0.0:4000/moderations' \ --header 'Content-Type: application/json' \ --header 'Authorization: Bearer sk-1234' \ --data '{"input": "Sample text goes here", "model": "text-moderation-stable"}' ``` """ global proxy_logging_obj data: Dict = {} try: # Use orjson to parse JSON data, orjson speeds up requests significantly body = await request.body() data = orjson.loads(body) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) data["model"] = ( general_settings.get("moderation_model", None) # server default or user_model # model name passed via cli args or data.get("model") # default passed in http request ) if user_model: data["model"] = user_model ### CALL HOOKS ### - modify incoming data / reject request before calling the model data = await proxy_logging_obj.pre_call_hook( user_api_key_dict=user_api_key_dict, data=data, call_type="moderation" ) time.time() ## ROUTE TO CORRECT ENDPOINT ## llm_call = await route_request( data=data, route_type="amoderation", llm_router=llm_router, user_model=user_model, ) response = await llm_call ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), request_data=data, hidden_params=hidden_params, ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.exception( "litellm.proxy.proxy_server.moderations(): Exception occured - {}".format( str(e) ) ) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) #### ANTHROPIC ENDPOINTS #### @router.post( "/v1/messages", tags=["[beta] Anthropic `/v1/messages`"], dependencies=[Depends(user_api_key_auth)], response_model=AnthropicResponse, include_in_schema=False, ) async def anthropic_response( # noqa: PLR0915 anthropic_data: AnthropicMessagesRequest, fastapi_response: Response, request: Request, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ šŸšØ DEPRECATED ENDPOINTšŸšØ Use `{PROXY_BASE_URL}/anthropic/v1/messages` instead - [Docs](https://docs.litellm.ai/docs/anthropic_completion). This was a BETA endpoint that calls 100+ LLMs in the anthropic format. """ from litellm import adapter_completion from litellm.adapters.anthropic_adapter import anthropic_adapter litellm.adapters = [{"id": "anthropic", "adapter": anthropic_adapter}] global user_temperature, user_request_timeout, user_max_tokens, user_api_base request_data = await _read_request_body(request=request) data: dict = {**request_data, "adapter_id": "anthropic"} try: data["model"] = ( general_settings.get("completion_model", None) # server default or user_model # model name passed via cli args or data["model"] # default passed in http request ) if user_model: data["model"] = user_model data = await add_litellm_data_to_request( data=data, # type: ignore request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # override with user settings, these are params passed via cli if user_temperature: data["temperature"] = user_temperature if user_request_timeout: data["request_timeout"] = user_request_timeout if user_max_tokens: data["max_tokens"] = user_max_tokens if user_api_base: data["api_base"] = user_api_base ### MODEL ALIAS MAPPING ### # check if model name in model alias map # get the actual model name if data["model"] in litellm.model_alias_map: data["model"] = litellm.model_alias_map[data["model"]] ### CALL HOOKS ### - modify incoming data before calling the model data = await proxy_logging_obj.pre_call_hook( # type: ignore user_api_key_dict=user_api_key_dict, data=data, call_type="text_completion" ) ### ROUTE THE REQUESTs ### router_model_names = llm_router.model_names if llm_router is not None else [] # skip router if user passed their key if "api_key" in data: llm_response = asyncio.create_task(litellm.aadapter_completion(**data)) elif ( llm_router is not None and data["model"] in router_model_names ): # model in router model list llm_response = asyncio.create_task(llm_router.aadapter_completion(**data)) elif ( llm_router is not None and llm_router.model_group_alias is not None and data["model"] in llm_router.model_group_alias ): # model set in model_group_alias llm_response = asyncio.create_task(llm_router.aadapter_completion(**data)) elif ( llm_router is not None and data["model"] in llm_router.deployment_names ): # model in router deployments, calling a specific deployment on the router llm_response = asyncio.create_task( llm_router.aadapter_completion(**data, specific_deployment=True) ) elif ( llm_router is not None and data["model"] in llm_router.get_model_ids() ): # model in router model list llm_response = asyncio.create_task(llm_router.aadapter_completion(**data)) elif ( llm_router is not None and data["model"] not in router_model_names and ( llm_router.default_deployment is not None or len(llm_router.pattern_router.patterns) > 0 ) ): # model in router deployments, calling a specific deployment on the router llm_response = asyncio.create_task(llm_router.aadapter_completion(**data)) elif user_model is not None: # `litellm --model ` llm_response = asyncio.create_task(litellm.aadapter_completion(**data)) else: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail={ "error": "completion: Invalid model name passed in model=" + data.get("model", "") }, ) # Await the llm_response task response = await llm_response hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" response_cost = hidden_params.get("response_cost", None) or "" ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) verbose_proxy_logger.debug("final response: %s", response) fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, response_cost=response_cost, request_data=data, hidden_params=hidden_params, ) ) if ( "stream" in data and data["stream"] is True ): # use generate_responses to stream responses selected_data_generator = async_data_generator_anthropic( response=response, user_api_key_dict=user_api_key_dict, request_data=data, ) return StreamingResponse( selected_data_generator, media_type="text/event-stream", ) verbose_proxy_logger.info("\nResponse from Litellm:\n{}".format(response)) return response except RejectedRequestError as e: _data = e.request_data await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=_data, ) if _data.get("stream", None) is not None and _data["stream"] is True: _chat_response = litellm.ModelResponse() _usage = litellm.Usage( prompt_tokens=0, completion_tokens=0, total_tokens=0, ) _chat_response.usage = _usage # type: ignore _chat_response.choices[0].message.content = e.message # type: ignore _iterator = litellm.utils.ModelResponseIterator( model_response=_chat_response, convert_to_delta=True ) _streaming_response = litellm.TextCompletionStreamWrapper( completion_stream=_iterator, model=_data.get("model", ""), ) selected_data_generator = select_data_generator( response=_streaming_response, user_api_key_dict=user_api_key_dict, request_data=data, ) return StreamingResponse( selected_data_generator, media_type="text/event-stream", headers={}, ) else: _response = litellm.TextCompletionResponse() _response.choices[0].text = e.message return _response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.exception( "litellm.proxy.proxy_server.anthropic_response(): Exception occured - {}".format( str(e) ) ) error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) #### DEV UTILS #### # @router.get( # "/utils/available_routes", # tags=["llm utils"], # dependencies=[Depends(user_api_key_auth)], # ) # async def get_available_routes(user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth)): @router.post( "/utils/token_counter", tags=["llm utils"], dependencies=[Depends(user_api_key_auth)], response_model=TokenCountResponse, ) async def token_counter(request: TokenCountRequest): """ """ from litellm import token_counter global llm_router prompt = request.prompt messages = request.messages if prompt is None and messages is None: raise HTTPException( status_code=400, detail="prompt or messages must be provided" ) deployment = None litellm_model_name = None model_info: Optional[ModelMapInfo] = None if llm_router is not None: # get 1 deployment corresponding to the model for _model in llm_router.model_list: if _model["model_name"] == request.model: deployment = _model model_info = llm_router.get_router_model_info( deployment=deployment, received_model_name=request.model, ) break if deployment is not None: litellm_model_name = deployment.get("litellm_params", {}).get("model") # remove the custom_llm_provider_prefix in the litellm_model_name if "/" in litellm_model_name: litellm_model_name = litellm_model_name.split("/", 1)[1] model_to_use = ( litellm_model_name or request.model ) # use litellm model name, if it's not avalable then fallback to request.model custom_tokenizer: Optional[CustomHuggingfaceTokenizer] = None if model_info is not None: custom_tokenizer = cast( Optional[CustomHuggingfaceTokenizer], model_info.get("custom_tokenizer", None), ) _tokenizer_used = litellm.utils._select_tokenizer( model=model_to_use, custom_tokenizer=custom_tokenizer ) tokenizer_used = str(_tokenizer_used["type"]) total_tokens = token_counter( model=model_to_use, text=prompt, messages=messages, custom_tokenizer=_tokenizer_used, # type: ignore ) return TokenCountResponse( total_tokens=total_tokens, request_model=request.model, model_used=model_to_use, tokenizer_type=tokenizer_used, ) @router.get( "/utils/supported_openai_params", tags=["llm utils"], dependencies=[Depends(user_api_key_auth)], ) async def supported_openai_params(model: str): """ Returns supported openai params for a given litellm model name e.g. `gpt-4` vs `gpt-3.5-turbo` Example curl: ``` curl -X GET --location 'http://localhost:4000/utils/supported_openai_params?model=gpt-3.5-turbo-16k' \ --header 'Authorization: Bearer sk-1234' ``` """ try: model, custom_llm_provider, _, _ = litellm.get_llm_provider(model=model) return { "supported_openai_params": litellm.get_supported_openai_params( model=model, custom_llm_provider=custom_llm_provider ) } except Exception: raise HTTPException( status_code=400, detail={"error": "Could not map model={}".format(model)} ) #### MODEL MANAGEMENT #### async def _add_model_to_db( model_params: Deployment, user_api_key_dict: UserAPIKeyAuth, prisma_client: PrismaClient, ): # encrypt litellm params # _litellm_params_dict = model_params.litellm_params.dict(exclude_none=True) _orignal_litellm_model_name = model_params.litellm_params.model for k, v in _litellm_params_dict.items(): encrypted_value = encrypt_value_helper(value=v) model_params.litellm_params[k] = encrypted_value _data: dict = { "model_id": model_params.model_info.id, "model_name": model_params.model_name, "litellm_params": model_params.litellm_params.model_dump_json(exclude_none=True), # type: ignore "model_info": model_params.model_info.model_dump_json( # type: ignore exclude_none=True ), "created_by": user_api_key_dict.user_id or litellm_proxy_admin_name, "updated_by": user_api_key_dict.user_id or litellm_proxy_admin_name, } if model_params.model_info.id is not None: _data["model_id"] = model_params.model_info.id model_response = await prisma_client.db.litellm_proxymodeltable.create( data=_data # type: ignore ) return model_response async def _add_team_model_to_db( model_params: Deployment, user_api_key_dict: UserAPIKeyAuth, prisma_client: PrismaClient, ): """ If 'team_id' is provided, - generate a unique 'model_name' for the model (e.g. 'model_name_{team_id}_{uuid}) - store the model in the db with the unique 'model_name' - store a team model alias mapping {"model_name": "model_name_{team_id}_{uuid}"} """ _team_id = model_params.model_info.team_id original_model_name = model_params.model_name if _team_id is None: return None unique_model_name = f"model_name_{_team_id}_{uuid.uuid4()}" model_params.model_name = unique_model_name ## CREATE MODEL IN DB ## model_response = await _add_model_to_db( model_params=model_params, user_api_key_dict=user_api_key_dict, prisma_client=prisma_client, ) ## CREATE MODEL ALIAS IN DB ## await update_team( data=UpdateTeamRequest( team_id=_team_id, model_aliases={original_model_name: unique_model_name}, ), user_api_key_dict=user_api_key_dict, http_request=Request(scope={"type": "http"}), ) return model_response def check_if_team_id_matches_key( team_id: Optional[str], user_api_key_dict: UserAPIKeyAuth ) -> bool: can_make_call = True if ( user_api_key_dict.user_role and user_api_key_dict.user_role == LitellmUserRoles.PROXY_ADMIN ): return True if team_id is None: if user_api_key_dict.user_role != LitellmUserRoles.PROXY_ADMIN: can_make_call = False else: if user_api_key_dict.team_id != team_id: can_make_call = False return can_make_call #### [BETA] - This is a beta endpoint, format might change based on user feedback. - https://github.com/BerriAI/litellm/issues/964 @router.post( "/model/new", description="Allows adding new models to the model list in the config.yaml", tags=["model management"], dependencies=[Depends(user_api_key_auth)], ) async def add_new_model( model_params: Deployment, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): global llm_router, llm_model_list, general_settings, user_config_file_path, proxy_config, prisma_client, master_key, store_model_in_db, proxy_logging_obj, premium_user try: import base64 if prisma_client is None: raise HTTPException( status_code=500, detail={ "error": "No DB Connected. Here's how to do it - https://docs.litellm.ai/docs/proxy/virtual_keys" }, ) if model_params.model_info.team_id is not None and premium_user is not True: raise HTTPException( status_code=403, detail={"error": CommonProxyErrors.not_premium_user.value}, ) if not check_if_team_id_matches_key( team_id=model_params.model_info.team_id, user_api_key_dict=user_api_key_dict ): raise HTTPException( status_code=403, detail={"error": "Team ID does not match the API key's team ID"}, ) model_response = None # update DB if store_model_in_db is True: """ - store model_list in db - store keys separately """ try: _original_litellm_model_name = model_params.model_name if model_params.model_info.team_id is None: model_response = await _add_model_to_db( model_params=model_params, user_api_key_dict=user_api_key_dict, prisma_client=prisma_client, ) else: model_response = await _add_team_model_to_db( model_params=model_params, user_api_key_dict=user_api_key_dict, prisma_client=prisma_client, ) await proxy_config.add_deployment( prisma_client=prisma_client, proxy_logging_obj=proxy_logging_obj ) # don't let failed slack alert block the /model/new response _alerting = general_settings.get("alerting", []) or [] if "slack" in _alerting: # send notification - new model added await proxy_logging_obj.slack_alerting_instance.model_added_alert( model_name=model_params.model_name, litellm_model_name=_original_litellm_model_name, passed_model_info=model_params.model_info, ) except Exception as e: verbose_proxy_logger.exception(f"Exception in add_new_model: {e}") else: raise HTTPException( status_code=500, detail={ "error": "Set `'STORE_MODEL_IN_DB='True'` in your env to enable this feature." }, ) return model_response except Exception as e: verbose_proxy_logger.error( "litellm.proxy.proxy_server.add_new_model(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "detail", f"Authentication Error({str(e)})"), type=ProxyErrorTypes.auth_error, param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) elif isinstance(e, ProxyException): raise e raise ProxyException( message="Authentication Error, " + str(e), type=ProxyErrorTypes.auth_error, param=getattr(e, "param", "None"), code=status.HTTP_400_BAD_REQUEST, ) #### MODEL MANAGEMENT #### @router.post( "/model/update", description="Edit existing model params", tags=["model management"], dependencies=[Depends(user_api_key_auth)], ) async def update_model( model_params: updateDeployment, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): global llm_router, llm_model_list, general_settings, user_config_file_path, proxy_config, prisma_client, master_key, store_model_in_db, proxy_logging_obj try: import base64 global prisma_client if prisma_client is None: raise HTTPException( status_code=500, detail={ "error": "No DB Connected. Here's how to do it - https://docs.litellm.ai/docs/proxy/virtual_keys" }, ) # update DB if store_model_in_db is True: _model_id = None _model_info = getattr(model_params, "model_info", None) if _model_info is None: raise Exception("model_info not provided") _model_id = _model_info.id if _model_id is None: raise Exception("model_info.id not provided") _existing_litellm_params = ( await prisma_client.db.litellm_proxymodeltable.find_unique( where={"model_id": _model_id} ) ) if _existing_litellm_params is None: if ( llm_router is not None and llm_router.get_deployment(model_id=_model_id) is not None ): raise HTTPException( status_code=400, detail={ "error": "Can't edit model. Model in config. Store model in db via `/model/new`. to edit." }, ) raise Exception("model not found") _existing_litellm_params_dict = dict( _existing_litellm_params.litellm_params ) if model_params.litellm_params is None: raise Exception("litellm_params not provided") _new_litellm_params_dict = model_params.litellm_params.dict( exclude_none=True ) ### ENCRYPT PARAMS ### for k, v in _new_litellm_params_dict.items(): encrypted_value = encrypt_value_helper(value=v) model_params.litellm_params[k] = encrypted_value ### MERGE WITH EXISTING DATA ### merged_dictionary = {} _mp = model_params.litellm_params.dict() for key, value in _mp.items(): if value is not None: merged_dictionary[key] = value elif ( key in _existing_litellm_params_dict and _existing_litellm_params_dict[key] is not None ): merged_dictionary[key] = _existing_litellm_params_dict[key] else: pass _data: dict = { "litellm_params": json.dumps(merged_dictionary), # type: ignore "updated_by": user_api_key_dict.user_id or litellm_proxy_admin_name, } model_response = await prisma_client.db.litellm_proxymodeltable.update( where={"model_id": _model_id}, data=_data, # type: ignore ) return model_response except Exception as e: verbose_proxy_logger.error( "litellm.proxy.proxy_server.update_model(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "detail", f"Authentication Error({str(e)})"), type=ProxyErrorTypes.auth_error, param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) elif isinstance(e, ProxyException): raise e raise ProxyException( message="Authentication Error, " + str(e), type=ProxyErrorTypes.auth_error, param=getattr(e, "param", "None"), code=status.HTTP_400_BAD_REQUEST, ) @router.get( "/v2/model/info", description="v2 - returns all the models set on the config.yaml, shows 'user_access' = True if the user has access to the model. Provides more info about each model in /models, including config.yaml descriptions (except api key and api base)", tags=["model management"], dependencies=[Depends(user_api_key_auth)], include_in_schema=False, ) async def model_info_v2( user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), model: Optional[str] = fastapi.Query( None, description="Specify the model name (optional)" ), debug: Optional[bool] = False, ): """ BETA ENDPOINT. Might change unexpectedly. Use `/v1/model/info` for now. """ global llm_model_list, general_settings, user_config_file_path, proxy_config, llm_router if llm_model_list is None or not isinstance(llm_model_list, list): raise HTTPException( status_code=500, detail={ "error": f"No model list passed, models={llm_model_list}. You can add a model through the config.yaml or on the LiteLLM Admin UI." }, ) # Load existing config await proxy_config.get_config() all_models = copy.deepcopy(llm_model_list) if user_model is not None: # if user does not use a config.yaml, https://github.com/BerriAI/litellm/issues/2061 all_models += [user_model] # check all models user has access to in user_api_key_dict if len(user_api_key_dict.models) > 0: pass if model is not None: all_models = [m for m in all_models if m["model_name"] == model] # fill in model info based on config.yaml and litellm model_prices_and_context_window.json for _model in all_models: # provided model_info in config.yaml model_info = _model.get("model_info", {}) if debug is True: _openai_client = "None" if llm_router is not None: _openai_client = ( llm_router._get_client( deployment=_model, kwargs={}, client_type="async" ) or "None" ) else: _openai_client = "llm_router_is_None" openai_client = str(_openai_client) _model["openai_client"] = openai_client # read litellm model_prices_and_context_window.json to get the following: # input_cost_per_token, output_cost_per_token, max_tokens litellm_model_info = get_litellm_model_info(model=_model) # 2nd pass on the model, try seeing if we can find model in litellm model_cost map if litellm_model_info == {}: # use litellm_param model_name to get model_info litellm_params = _model.get("litellm_params", {}) litellm_model = litellm_params.get("model", None) try: litellm_model_info = litellm.get_model_info(model=litellm_model) except Exception: litellm_model_info = {} # 3rd pass on the model, try seeing if we can find model but without the "/" in model cost map if litellm_model_info == {}: # use litellm_param model_name to get model_info litellm_params = _model.get("litellm_params", {}) litellm_model = litellm_params.get("model", None) split_model = litellm_model.split("/") if len(split_model) > 0: litellm_model = split_model[-1] try: litellm_model_info = litellm.get_model_info( model=litellm_model, custom_llm_provider=split_model[0] ) except Exception: litellm_model_info = {} for k, v in litellm_model_info.items(): if k not in model_info: model_info[k] = v _model["model_info"] = model_info # don't return the api key / vertex credentials # don't return the llm credentials _model["litellm_params"].pop("api_key", None) _model["litellm_params"].pop("vertex_credentials", None) _model["litellm_params"].pop("aws_access_key_id", None) _model["litellm_params"].pop("aws_secret_access_key", None) verbose_proxy_logger.debug("all_models: %s", all_models) return {"data": all_models} @router.get( "/model/streaming_metrics", description="View time to first token for models in spend logs", tags=["model management"], include_in_schema=False, dependencies=[Depends(user_api_key_auth)], ) async def model_streaming_metrics( user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), _selected_model_group: Optional[str] = None, startTime: Optional[datetime] = None, endTime: Optional[datetime] = None, ): global prisma_client, llm_router if prisma_client is None: raise ProxyException( message=CommonProxyErrors.db_not_connected_error.value, type="internal_error", param="None", code=status.HTTP_500_INTERNAL_SERVER_ERROR, ) startTime = startTime or datetime.now() - timedelta(days=7) # show over past week endTime = endTime or datetime.now() is_same_day = startTime.date() == endTime.date() if is_same_day: sql_query = """ SELECT api_base, model_group, model, "startTime", request_id, EXTRACT(epoch FROM ("completionStartTime" - "startTime")) AS time_to_first_token FROM "LiteLLM_SpendLogs" WHERE "model_group" = $1 AND "cache_hit" != 'True' AND "completionStartTime" IS NOT NULL AND "completionStartTime" != "endTime" AND DATE("startTime") = DATE($2::timestamp) GROUP BY api_base, model_group, model, request_id ORDER BY time_to_first_token DESC; """ else: sql_query = """ SELECT api_base, model_group, model, DATE_TRUNC('day', "startTime")::DATE AS day, AVG(EXTRACT(epoch FROM ("completionStartTime" - "startTime"))) AS time_to_first_token FROM "LiteLLM_SpendLogs" WHERE "startTime" BETWEEN $2::timestamp AND $3::timestamp AND "model_group" = $1 AND "cache_hit" != 'True' AND "completionStartTime" IS NOT NULL AND "completionStartTime" != "endTime" GROUP BY api_base, model_group, model, day ORDER BY time_to_first_token DESC; """ _all_api_bases = set() db_response = await prisma_client.db.query_raw( sql_query, _selected_model_group, startTime, endTime ) _daily_entries: dict = {} # {"Jun 23": {"model1": 0.002, "model2": 0.003}} if db_response is not None: for model_data in db_response: _api_base = model_data["api_base"] _model = model_data["model"] time_to_first_token = model_data["time_to_first_token"] unique_key = "" if is_same_day: _request_id = model_data["request_id"] unique_key = _request_id if _request_id not in _daily_entries: _daily_entries[_request_id] = {} else: _day = model_data["day"] unique_key = _day time_to_first_token = model_data["time_to_first_token"] if _day not in _daily_entries: _daily_entries[_day] = {} _combined_model_name = str(_model) if "https://" in _api_base: _combined_model_name = str(_api_base) if "/openai/" in _combined_model_name: _combined_model_name = _combined_model_name.split("/openai/")[0] _all_api_bases.add(_combined_model_name) _daily_entries[unique_key][_combined_model_name] = time_to_first_token """ each entry needs to be like this: { date: 'Jun 23', 'gpt-4-https://api.openai.com/v1/': 0.002, 'gpt-43-https://api.openai.com-12/v1/': 0.002, } """ # convert daily entries to list of dicts response: List[dict] = [] # sort daily entries by date _daily_entries = dict(sorted(_daily_entries.items(), key=lambda item: item[0])) for day in _daily_entries: entry = {"date": str(day)} for model_key, latency in _daily_entries[day].items(): entry[model_key] = latency response.append(entry) return { "data": response, "all_api_bases": list(_all_api_bases), } @router.get( "/model/metrics", description="View number of requests & avg latency per model on config.yaml", tags=["model management"], include_in_schema=False, dependencies=[Depends(user_api_key_auth)], ) async def model_metrics( user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), _selected_model_group: Optional[str] = "gpt-4-32k", startTime: Optional[datetime] = None, endTime: Optional[datetime] = None, api_key: Optional[str] = None, customer: Optional[str] = None, ): global prisma_client, llm_router if prisma_client is None: raise ProxyException( message="Prisma Client is not initialized", type="internal_error", param="None", code=status.HTTP_500_INTERNAL_SERVER_ERROR, ) startTime = startTime or datetime.now() - timedelta(days=30) endTime = endTime or datetime.now() if api_key is None or api_key == "undefined": api_key = "null" if customer is None or customer == "undefined": customer = "null" sql_query = """ SELECT api_base, model_group, model, DATE_TRUNC('day', "startTime")::DATE AS day, AVG(EXTRACT(epoch FROM ("endTime" - "startTime")) / NULLIF("completion_tokens", 0)) AS avg_latency_per_token FROM "LiteLLM_SpendLogs" WHERE "startTime" >= $2::timestamp AND "startTime" <= $3::timestamp AND "model_group" = $1 AND "cache_hit" != 'True' AND ( CASE WHEN $4 != 'null' THEN "api_key" = $4 ELSE TRUE END ) AND ( CASE WHEN $5 != 'null' THEN "end_user" = $5 ELSE TRUE END ) GROUP BY api_base, model_group, model, day HAVING SUM(completion_tokens) > 0 ORDER BY avg_latency_per_token DESC; """ _all_api_bases = set() db_response = await prisma_client.db.query_raw( sql_query, _selected_model_group, startTime, endTime, api_key, customer ) _daily_entries: dict = {} # {"Jun 23": {"model1": 0.002, "model2": 0.003}} if db_response is not None: for model_data in db_response: _api_base = model_data["api_base"] _model = model_data["model"] _day = model_data["day"] _avg_latency_per_token = model_data["avg_latency_per_token"] if _day not in _daily_entries: _daily_entries[_day] = {} _combined_model_name = str(_model) if "https://" in _api_base: _combined_model_name = str(_api_base) if "/openai/" in _combined_model_name: _combined_model_name = _combined_model_name.split("/openai/")[0] _all_api_bases.add(_combined_model_name) _daily_entries[_day][_combined_model_name] = _avg_latency_per_token """ each entry needs to be like this: { date: 'Jun 23', 'gpt-4-https://api.openai.com/v1/': 0.002, 'gpt-43-https://api.openai.com-12/v1/': 0.002, } """ # convert daily entries to list of dicts response: List[dict] = [] # sort daily entries by date _daily_entries = dict(sorted(_daily_entries.items(), key=lambda item: item[0])) for day in _daily_entries: entry = {"date": str(day)} for model_key, latency in _daily_entries[day].items(): entry[model_key] = latency response.append(entry) return { "data": response, "all_api_bases": list(_all_api_bases), } @router.get( "/model/metrics/slow_responses", description="View number of hanging requests per model_group", tags=["model management"], include_in_schema=False, dependencies=[Depends(user_api_key_auth)], ) async def model_metrics_slow_responses( user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), _selected_model_group: Optional[str] = "gpt-4-32k", startTime: Optional[datetime] = None, endTime: Optional[datetime] = None, api_key: Optional[str] = None, customer: Optional[str] = None, ): global prisma_client, llm_router, proxy_logging_obj if prisma_client is None: raise ProxyException( message="Prisma Client is not initialized", type="internal_error", param="None", code=status.HTTP_500_INTERNAL_SERVER_ERROR, ) if api_key is None or api_key == "undefined": api_key = "null" if customer is None or customer == "undefined": customer = "null" startTime = startTime or datetime.now() - timedelta(days=30) endTime = endTime or datetime.now() alerting_threshold = ( proxy_logging_obj.slack_alerting_instance.alerting_threshold or 300 ) alerting_threshold = int(alerting_threshold) sql_query = """ SELECT api_base, COUNT(*) AS total_count, SUM(CASE WHEN ("endTime" - "startTime") >= (INTERVAL '1 SECOND' * CAST($1 AS INTEGER)) THEN 1 ELSE 0 END) AS slow_count FROM "LiteLLM_SpendLogs" WHERE "model_group" = $2 AND "cache_hit" != 'True' AND "startTime" >= $3::timestamp AND "startTime" <= $4::timestamp AND ( CASE WHEN $5 != 'null' THEN "api_key" = $5 ELSE TRUE END ) AND ( CASE WHEN $6 != 'null' THEN "end_user" = $6 ELSE TRUE END ) GROUP BY api_base ORDER BY slow_count DESC; """ db_response = await prisma_client.db.query_raw( sql_query, alerting_threshold, _selected_model_group, startTime, endTime, api_key, customer, ) if db_response is not None: for row in db_response: _api_base = row.get("api_base") or "" if "/openai/" in _api_base: _api_base = _api_base.split("/openai/")[0] row["api_base"] = _api_base return db_response @router.get( "/model/metrics/exceptions", description="View number of failed requests per model on config.yaml", tags=["model management"], include_in_schema=False, dependencies=[Depends(user_api_key_auth)], ) async def model_metrics_exceptions( user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), _selected_model_group: Optional[str] = None, startTime: Optional[datetime] = None, endTime: Optional[datetime] = None, api_key: Optional[str] = None, customer: Optional[str] = None, ): global prisma_client, llm_router if prisma_client is None: raise ProxyException( message="Prisma Client is not initialized", type="internal_error", param="None", code=status.HTTP_500_INTERNAL_SERVER_ERROR, ) startTime = startTime or datetime.now() - timedelta(days=30) endTime = endTime or datetime.now() if api_key is None or api_key == "undefined": api_key = "null" """ """ sql_query = """ WITH cte AS ( SELECT CASE WHEN api_base = '' THEN litellm_model_name ELSE CONCAT(litellm_model_name, '-', api_base) END AS combined_model_api_base, exception_type, COUNT(*) AS num_rate_limit_exceptions FROM "LiteLLM_ErrorLogs" WHERE "startTime" >= $1::timestamp AND "endTime" <= $2::timestamp AND model_group = $3 GROUP BY combined_model_api_base, exception_type ) SELECT combined_model_api_base, COUNT(*) AS total_exceptions, json_object_agg(exception_type, num_rate_limit_exceptions) AS exception_counts FROM cte GROUP BY combined_model_api_base ORDER BY total_exceptions DESC LIMIT 200; """ db_response = await prisma_client.db.query_raw( sql_query, startTime, endTime, _selected_model_group, api_key ) response: List[dict] = [] exception_types = set() """ Return Data { "combined_model_api_base": "gpt-3.5-turbo-https://api.openai.com/v1/, "total_exceptions": 5, "BadRequestException": 5, "TimeoutException": 2 } """ if db_response is not None: # loop through all models for model_data in db_response: model = model_data.get("combined_model_api_base", "") total_exceptions = model_data.get("total_exceptions", 0) exception_counts = model_data.get("exception_counts", {}) curr_row = { "model": model, "total_exceptions": total_exceptions, } curr_row.update(exception_counts) response.append(curr_row) for k, v in exception_counts.items(): exception_types.add(k) return {"data": response, "exception_types": list(exception_types)} def _get_proxy_model_info(model: dict) -> dict: # provided model_info in config.yaml model_info = model.get("model_info", {}) # read litellm model_prices_and_context_window.json to get the following: # input_cost_per_token, output_cost_per_token, max_tokens litellm_model_info = get_litellm_model_info(model=model) # 2nd pass on the model, try seeing if we can find model in litellm model_cost map if litellm_model_info == {}: # use litellm_param model_name to get model_info litellm_params = model.get("litellm_params", {}) litellm_model = litellm_params.get("model", None) try: litellm_model_info = litellm.get_model_info(model=litellm_model) except Exception: litellm_model_info = {} # 3rd pass on the model, try seeing if we can find model but without the "/" in model cost map if litellm_model_info == {}: # use litellm_param model_name to get model_info litellm_params = model.get("litellm_params", {}) litellm_model = litellm_params.get("model", None) split_model = litellm_model.split("/") if len(split_model) > 0: litellm_model = split_model[-1] try: litellm_model_info = litellm.get_model_info( model=litellm_model, custom_llm_provider=split_model[0] ) except Exception: litellm_model_info = {} for k, v in litellm_model_info.items(): if k not in model_info: model_info[k] = v model["model_info"] = model_info # don't return the llm credentials model = remove_sensitive_info_from_deployment(deployment_dict=model) return model @router.get( "/model/info", tags=["model management"], dependencies=[Depends(user_api_key_auth)], ) @router.get( "/v1/model/info", tags=["model management"], dependencies=[Depends(user_api_key_auth)], ) async def model_info_v1( # noqa: PLR0915 user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), litellm_model_id: Optional[str] = None, ): """ Provides more info about each model in /models, including config.yaml descriptions (except api key and api base) Parameters: litellm_model_id: Optional[str] = None (this is the value of `x-litellm-model-id` returned in response headers) - When litellm_model_id is passed, it will return the info for that specific model - When litellm_model_id is not passed, it will return the info for all models Returns: Returns a dictionary containing information about each model. Example Response: ```json { "data": [ { "model_name": "fake-openai-endpoint", "litellm_params": { "api_base": "https://exampleopenaiendpoint-production.up.railway.app/", "model": "openai/fake" }, "model_info": { "id": "112f74fab24a7a5245d2ced3536dd8f5f9192c57ee6e332af0f0512e08bed5af", "db_model": false } } ] } ``` """ global llm_model_list, general_settings, user_config_file_path, proxy_config, llm_router, user_model if user_model is not None: # user is trying to get specific model from litellm router try: model_info: Dict = cast(Dict, litellm.get_model_info(model=user_model)) except Exception: model_info = {} _deployment_info = Deployment( model_name="*", litellm_params=LiteLLM_Params( model=user_model, ), model_info=model_info, ) _deployment_info_dict = _deployment_info.model_dump() _deployment_info_dict = remove_sensitive_info_from_deployment( deployment_dict=_deployment_info_dict ) return {"data": _deployment_info_dict} if llm_model_list is None: raise HTTPException( status_code=500, detail={ "error": "LLM Model List not loaded in. Make sure you passed models in your config.yaml or on the LiteLLM Admin UI. - https://docs.litellm.ai/docs/proxy/configs" }, ) if llm_router is None: raise HTTPException( status_code=500, detail={ "error": "LLM Router is not loaded in. Make sure you passed models in your config.yaml or on the LiteLLM Admin UI. - https://docs.litellm.ai/docs/proxy/configs" }, ) if litellm_model_id is not None: # user is trying to get specific model from litellm router deployment_info = llm_router.get_deployment(model_id=litellm_model_id) if deployment_info is None: raise HTTPException( status_code=400, detail={ "error": f"Model id = {litellm_model_id} not found on litellm proxy" }, ) _deployment_info_dict = _get_proxy_model_info( model=deployment_info.model_dump(exclude_none=True) ) return {"data": [_deployment_info_dict]} all_models: List[dict] = [] model_access_groups: Dict[str, List[str]] = defaultdict(list) ## CHECK IF MODEL RESTRICTIONS ARE SET AT KEY/TEAM LEVEL ## if llm_router is None: proxy_model_list = [] else: proxy_model_list = llm_router.get_model_names() model_access_groups = llm_router.get_model_access_groups() key_models = get_key_models( user_api_key_dict=user_api_key_dict, proxy_model_list=proxy_model_list, model_access_groups=model_access_groups, ) team_models = get_team_models( user_api_key_dict=user_api_key_dict, proxy_model_list=proxy_model_list, model_access_groups=model_access_groups, ) all_models_str = get_complete_model_list( key_models=key_models, team_models=team_models, proxy_model_list=proxy_model_list, user_model=user_model, infer_model_from_keys=general_settings.get("infer_model_from_keys", False), ) if len(all_models_str) > 0: model_names = all_models_str llm_model_list = llm_router.get_model_list() if llm_model_list is not None: _relevant_models = [ m for m in llm_model_list if m["model_name"] in model_names ] all_models = copy.deepcopy(_relevant_models) # type: ignore else: all_models = [] for model in all_models: model = _get_proxy_model_info(model=model) verbose_proxy_logger.debug("all_models: %s", all_models) return {"data": all_models} def _get_model_group_info( llm_router: Router, all_models_str: List[str], model_group: Optional[str] ) -> List[ModelGroupInfo]: model_groups: List[ModelGroupInfo] = [] for model in all_models_str: if model_group is not None and model_group != model: continue _model_group_info = llm_router.get_model_group_info(model_group=model) if _model_group_info is not None: model_groups.append(_model_group_info) return model_groups @router.get( "/model_group/info", tags=["model management"], dependencies=[Depends(user_api_key_auth)], ) async def model_group_info( user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), model_group: Optional[str] = None, ): """ Get information about all the deployments on litellm proxy, including config.yaml descriptions (except api key and api base) - /model_group/info returns all model groups. End users of proxy should use /model_group/info since those models will be used for /chat/completions, /embeddings, etc. - /model_group/info?model_group=rerank-english-v3.0 returns all model groups for a specific model group (`model_name` in config.yaml) Example Request (All Models): ```shell curl -X 'GET' \ 'http://localhost:4000/model_group/info' \ -H 'accept: application/json' \ -H 'x-api-key: sk-1234' ``` Example Request (Specific Model Group): ```shell curl -X 'GET' \ 'http://localhost:4000/model_group/info?model_group=rerank-english-v3.0' \ -H 'accept: application/json' \ -H 'Authorization: Bearer sk-1234' ``` Example Request (Specific Wildcard Model Group): (e.g. `model_name: openai/*` on config.yaml) ```shell curl -X 'GET' \ 'http://localhost:4000/model_group/info?model_group=openai/tts-1' -H 'accept: application/json' \ -H 'Authorization: Bearersk-1234' ``` Learn how to use and set wildcard models [here](https://docs.litellm.ai/docs/wildcard_routing) Example Response: ```json { "data": [ { "model_group": "rerank-english-v3.0", "providers": [ "cohere" ], "max_input_tokens": null, "max_output_tokens": null, "input_cost_per_token": 0.0, "output_cost_per_token": 0.0, "mode": null, "tpm": null, "rpm": null, "supports_parallel_function_calling": false, "supports_vision": false, "supports_function_calling": false, "supported_openai_params": [ "stream", "temperature", "max_tokens", "logit_bias", "top_p", "frequency_penalty", "presence_penalty", "stop", "n", "extra_headers" ] }, { "model_group": "gpt-3.5-turbo", "providers": [ "openai" ], "max_input_tokens": 16385.0, "max_output_tokens": 4096.0, "input_cost_per_token": 1.5e-06, "output_cost_per_token": 2e-06, "mode": "chat", "tpm": null, "rpm": null, "supports_parallel_function_calling": false, "supports_vision": false, "supports_function_calling": true, "supported_openai_params": [ "frequency_penalty", "logit_bias", "logprobs", "top_logprobs", "max_tokens", "max_completion_tokens", "n", "presence_penalty", "seed", "stop", "stream", "stream_options", "temperature", "top_p", "tools", "tool_choice", "function_call", "functions", "max_retries", "extra_headers", "parallel_tool_calls", "response_format" ] }, { "model_group": "llava-hf", "providers": [ "openai" ], "max_input_tokens": null, "max_output_tokens": null, "input_cost_per_token": 0.0, "output_cost_per_token": 0.0, "mode": null, "tpm": null, "rpm": null, "supports_parallel_function_calling": false, "supports_vision": true, "supports_function_calling": false, "supported_openai_params": [ "frequency_penalty", "logit_bias", "logprobs", "top_logprobs", "max_tokens", "max_completion_tokens", "n", "presence_penalty", "seed", "stop", "stream", "stream_options", "temperature", "top_p", "tools", "tool_choice", "function_call", "functions", "max_retries", "extra_headers", "parallel_tool_calls", "response_format" ] } ] } ``` """ global llm_model_list, general_settings, user_config_file_path, proxy_config, llm_router if llm_model_list is None: raise HTTPException( status_code=500, detail={"error": "LLM Model List not loaded in"} ) if llm_router is None: raise HTTPException( status_code=500, detail={"error": "LLM Router is not loaded in"} ) ## CHECK IF MODEL RESTRICTIONS ARE SET AT KEY/TEAM LEVEL ## model_access_groups: Dict[str, List[str]] = defaultdict(list) if llm_router is None: proxy_model_list = [] else: proxy_model_list = llm_router.get_model_names() model_access_groups = llm_router.get_model_access_groups() key_models = get_key_models( user_api_key_dict=user_api_key_dict, proxy_model_list=proxy_model_list, model_access_groups=model_access_groups, ) team_models = get_team_models( user_api_key_dict=user_api_key_dict, proxy_model_list=proxy_model_list, model_access_groups=model_access_groups, ) all_models_str = get_complete_model_list( key_models=key_models, team_models=team_models, proxy_model_list=proxy_model_list, user_model=user_model, infer_model_from_keys=general_settings.get("infer_model_from_keys", False), ) model_groups: List[ModelGroupInfo] = _get_model_group_info( llm_router=llm_router, all_models_str=all_models_str, model_group=model_group ) return {"data": model_groups} #### [BETA] - This is a beta endpoint, format might change based on user feedback. - https://github.com/BerriAI/litellm/issues/964 @router.post( "/model/delete", description="Allows deleting models in the model list in the config.yaml", tags=["model management"], dependencies=[Depends(user_api_key_auth)], ) async def delete_model(model_info: ModelInfoDelete): global llm_router, llm_model_list, general_settings, user_config_file_path, proxy_config try: """ [BETA] - This is a beta endpoint, format might change based on user feedback. - https://github.com/BerriAI/litellm/issues/964 - Check if id in db - Delete """ global prisma_client if prisma_client is None: raise HTTPException( status_code=500, detail={ "error": "No DB Connected. Here's how to do it - https://docs.litellm.ai/docs/proxy/virtual_keys" }, ) # update DB if store_model_in_db is True: """ - store model_list in db - store keys separately """ # encrypt litellm params # result = await prisma_client.db.litellm_proxymodeltable.delete( where={"model_id": model_info.id} ) if result is None: raise HTTPException( status_code=400, detail={"error": f"Model with id={model_info.id} not found in db"}, ) ## DELETE FROM ROUTER ## if llm_router is not None: llm_router.delete_deployment(id=model_info.id) return {"message": f"Model: {result.model_id} deleted successfully"} else: raise HTTPException( status_code=500, detail={ "error": "Set `'STORE_MODEL_IN_DB='True'` in your env to enable this feature." }, ) except Exception as e: if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "detail", f"Authentication Error({str(e)})"), type=ProxyErrorTypes.auth_error, param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) elif isinstance(e, ProxyException): raise e raise ProxyException( message="Authentication Error, " + str(e), type=ProxyErrorTypes.auth_error, param=getattr(e, "param", "None"), code=status.HTTP_400_BAD_REQUEST, ) @router.get( "/model/settings", description="Returns provider name, description, and required parameters for each provider", tags=["model management"], dependencies=[Depends(user_api_key_auth)], include_in_schema=False, ) async def model_settings(): """ Used by UI to generate 'model add' page { field_name=field_name, field_type=allowed_args[field_name]["type"], # string/int field_description=field_info.description or "", # human-friendly description field_value=general_settings.get(field_name, None), # example value } """ returned_list = [] for provider in litellm.provider_list: returned_list.append( ProviderInfo( name=provider, fields=litellm.get_provider_fields(custom_llm_provider=provider), ) ) return returned_list #### ALERTING MANAGEMENT ENDPOINTS #### @router.get( "/alerting/settings", description="Return the configurable alerting param, description, and current value", tags=["alerting"], dependencies=[Depends(user_api_key_auth)], include_in_schema=False, ) async def alerting_settings( user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): global proxy_logging_obj, prisma_client """ Used by UI to generate 'alerting settings' page { field_name=field_name, field_type=allowed_args[field_name]["type"], # string/int field_description=field_info.description or "", # human-friendly description field_value=general_settings.get(field_name, None), # example value } """ if prisma_client is None: raise HTTPException( status_code=400, detail={"error": CommonProxyErrors.db_not_connected_error.value}, ) if user_api_key_dict.user_role != LitellmUserRoles.PROXY_ADMIN: raise HTTPException( status_code=400, detail={ "error": "{}, your role={}".format( CommonProxyErrors.not_allowed_access.value, user_api_key_dict.user_role, ) }, ) ## get general settings from db db_general_settings = await prisma_client.db.litellm_config.find_first( where={"param_name": "general_settings"} ) if db_general_settings is not None and db_general_settings.param_value is not None: db_general_settings_dict = dict(db_general_settings.param_value) alerting_args_dict: dict = db_general_settings_dict.get("alerting_args", {}) # type: ignore alerting_values: Optional[list] = db_general_settings_dict.get("alerting") # type: ignore else: alerting_args_dict = {} alerting_values = None allowed_args = { "slack_alerting": {"type": "Boolean"}, "daily_report_frequency": {"type": "Integer"}, "report_check_interval": {"type": "Integer"}, "budget_alert_ttl": {"type": "Integer"}, "outage_alert_ttl": {"type": "Integer"}, "region_outage_alert_ttl": {"type": "Integer"}, "minor_outage_alert_threshold": {"type": "Integer"}, "major_outage_alert_threshold": {"type": "Integer"}, "max_outage_alert_list_size": {"type": "Integer"}, } _slack_alerting: SlackAlerting = proxy_logging_obj.slack_alerting_instance _slack_alerting_args_dict = _slack_alerting.alerting_args.model_dump() return_val = [] is_slack_enabled = False if general_settings.get("alerting") and isinstance( general_settings["alerting"], list ): if "slack" in general_settings["alerting"]: is_slack_enabled = True _response_obj = ConfigList( field_name="slack_alerting", field_type=allowed_args["slack_alerting"]["type"], field_description="Enable slack alerting for monitoring proxy in production: llm outages, budgets, spend tracking failures.", field_value=is_slack_enabled, stored_in_db=True if alerting_values is not None else False, field_default_value=None, premium_field=False, ) return_val.append(_response_obj) for field_name, field_info in SlackAlertingArgs.model_fields.items(): if field_name in allowed_args: _stored_in_db: Optional[bool] = None if field_name in alerting_args_dict: _stored_in_db = True else: _stored_in_db = False _response_obj = ConfigList( field_name=field_name, field_type=allowed_args[field_name]["type"], field_description=field_info.description or "", field_value=_slack_alerting_args_dict.get(field_name, None), stored_in_db=_stored_in_db, field_default_value=field_info.default, premium_field=( True if field_name == "region_outage_alert_ttl" else False ), ) return_val.append(_response_obj) return return_val #### EXPERIMENTAL QUEUING #### @router.post( "/queue/chat/completions", tags=["experimental"], dependencies=[Depends(user_api_key_auth)], include_in_schema=False, ) async def async_queue_request( request: Request, fastapi_response: Response, model: Optional[str] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): global general_settings, user_debug, proxy_logging_obj """ v2 attempt at a background worker to handle queuing. Just supports /chat/completion calls currently. Now using a FastAPI background task + /chat/completions compatible endpoint """ data = {} try: data = await request.json() # type: ignore # Include original request and headers in the data data["proxy_server_request"] = { "url": str(request.url), "method": request.method, "headers": dict(request.headers), "body": copy.copy(data), # use copy instead of deepcopy } verbose_proxy_logger.debug("receiving data: %s", data) data["model"] = ( general_settings.get("completion_model", None) # server default or user_model # model name passed via cli args or model # for azure deployments or data["model"] # default passed in http request ) # users can pass in 'user' param to /chat/completions. Don't override it if data.get("user", None) is None and user_api_key_dict.user_id is not None: # if users are using user_api_key_auth, set `user` in `data` data["user"] = user_api_key_dict.user_id if "metadata" not in data: data["metadata"] = {} data["metadata"]["user_api_key"] = user_api_key_dict.api_key data["metadata"]["user_api_key_metadata"] = user_api_key_dict.metadata _headers = dict(request.headers) _headers.pop( "authorization", None ) # do not store the original `sk-..` api key in the db data["metadata"]["headers"] = _headers data["metadata"]["user_api_key_alias"] = getattr( user_api_key_dict, "key_alias", None ) data["metadata"]["user_api_key_user_id"] = user_api_key_dict.user_id data["metadata"]["user_api_key_team_id"] = getattr( user_api_key_dict, "team_id", None ) data["metadata"]["endpoint"] = str(request.url) global user_temperature, user_request_timeout, user_max_tokens, user_api_base # override with user settings, these are params passed via cli if user_temperature: data["temperature"] = user_temperature if user_request_timeout: data["request_timeout"] = user_request_timeout if user_max_tokens: data["max_tokens"] = user_max_tokens if user_api_base: data["api_base"] = user_api_base if llm_router is None: raise HTTPException( status_code=500, detail={"error": CommonProxyErrors.no_llm_router.value} ) response = await llm_router.schedule_acompletion(**data) if ( "stream" in data and data["stream"] is True ): # use generate_responses to stream responses return StreamingResponse( async_data_generator( user_api_key_dict=user_api_key_dict, response=response, request_data=data, ), media_type="text/event-stream", ) fastapi_response.headers.update({"x-litellm-priority": str(data["priority"])}) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "detail", f"Authentication Error({str(e)})"), type=ProxyErrorTypes.auth_error, param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) elif isinstance(e, ProxyException): raise e raise ProxyException( message="Authentication Error, " + str(e), type=ProxyErrorTypes.auth_error, param=getattr(e, "param", "None"), code=status.HTTP_400_BAD_REQUEST, ) @app.get("/fallback/login", tags=["experimental"], include_in_schema=False) async def fallback_login(request: Request): """ Create Proxy API Keys using Google Workspace SSO. Requires setting PROXY_BASE_URL in .env PROXY_BASE_URL should be the your deployed proxy endpoint, e.g. PROXY_BASE_URL="https://litellm-production-7002.up.railway.app/" Example: """ # get url from request redirect_url = os.getenv("PROXY_BASE_URL", str(request.base_url)) ui_username = os.getenv("UI_USERNAME") if redirect_url.endswith("/"): redirect_url += "sso/callback" else: redirect_url += "/sso/callback" if ui_username is not None: # No Google, Microsoft SSO # Use UI Credentials set in .env from fastapi.responses import HTMLResponse return HTMLResponse(content=html_form, status_code=200) else: from fastapi.responses import HTMLResponse return HTMLResponse(content=html_form, status_code=200) @router.post( "/login", include_in_schema=False ) # hidden since this is a helper for UI sso login async def login(request: Request): # noqa: PLR0915 global premium_user, general_settings try: import multipart except ImportError: subprocess.run(["pip", "install", "python-multipart"]) global master_key if master_key is None: raise ProxyException( message="Master Key not set for Proxy. Please set Master Key to use Admin UI. Set `LITELLM_MASTER_KEY` in .env or set general_settings:master_key in config.yaml. https://docs.litellm.ai/docs/proxy/virtual_keys. If set, use `--detailed_debug` to debug issue.", type=ProxyErrorTypes.auth_error, param="master_key", code=status.HTTP_500_INTERNAL_SERVER_ERROR, ) form = await request.form() username = str(form.get("username")) password = str(form.get("password")) ui_username = os.getenv("UI_USERNAME", "admin") ui_password = os.getenv("UI_PASSWORD", None) if ui_password is None: ui_password = str(master_key) if master_key is not None else None if ui_password is None: raise ProxyException( message="set Proxy master key to use UI. https://docs.litellm.ai/docs/proxy/virtual_keys. If set, use `--detailed_debug` to debug issue.", type=ProxyErrorTypes.auth_error, param="UI_PASSWORD", code=status.HTTP_500_INTERNAL_SERVER_ERROR, ) # check if we can find the `username` in the db. on the ui, users can enter username=their email _user_row = None user_role: Optional[ Literal[ LitellmUserRoles.PROXY_ADMIN, LitellmUserRoles.PROXY_ADMIN_VIEW_ONLY, LitellmUserRoles.INTERNAL_USER, LitellmUserRoles.INTERNAL_USER_VIEW_ONLY, ] ] = None if prisma_client is not None: _user_row = await prisma_client.db.litellm_usertable.find_first( where={"user_email": {"equals": username}} ) disabled_non_admin_personal_key_creation = ( get_disabled_non_admin_personal_key_creation() ) """ To login to Admin UI, we support the following - Login with UI_USERNAME and UI_PASSWORD - Login with Invite Link `user_email` and `password` combination """ if secrets.compare_digest(username, ui_username) and secrets.compare_digest( password, ui_password ): # Non SSO -> If user is using UI_USERNAME and UI_PASSWORD they are Proxy admin user_role = LitellmUserRoles.PROXY_ADMIN user_id = litellm_proxy_admin_name # we want the key created to have PROXY_ADMIN_PERMISSIONS key_user_id = litellm_proxy_admin_name if ( os.getenv("PROXY_ADMIN_ID", None) is not None and os.environ["PROXY_ADMIN_ID"] == user_id ) or user_id == litellm_proxy_admin_name: # checks if user is admin key_user_id = os.getenv("PROXY_ADMIN_ID", litellm_proxy_admin_name) # Admin is Authe'd in - generate key for the UI to access Proxy # ensure this user is set as the proxy admin, in this route there is no sso, we can assume this user is only the admin await user_update( data=UpdateUserRequest( user_id=key_user_id, user_role=user_role, ) ) if os.getenv("DATABASE_URL") is not None: response = await generate_key_helper_fn( request_type="key", **{ "user_role": LitellmUserRoles.PROXY_ADMIN, "duration": "24hr", "key_max_budget": litellm.max_ui_session_budget, "models": [], "aliases": {}, "config": {}, "spend": 0, "user_id": key_user_id, "team_id": "litellm-dashboard", }, # type: ignore ) else: raise ProxyException( message="No Database connected. Set DATABASE_URL in .env. If set, use `--detailed_debug` to debug issue.", type=ProxyErrorTypes.auth_error, param="DATABASE_URL", code=status.HTTP_500_INTERNAL_SERVER_ERROR, ) key = response["token"] # type: ignore litellm_dashboard_ui = os.getenv("PROXY_BASE_URL", "") if litellm_dashboard_ui.endswith("/"): litellm_dashboard_ui += "ui/" else: litellm_dashboard_ui += "/ui/" import jwt jwt_token = jwt.encode( # type: ignore { "user_id": user_id, "key": key, "user_email": None, "user_role": user_role, # this is the path without sso - we can assume only admins will use this "login_method": "username_password", "premium_user": premium_user, "auth_header_name": general_settings.get( "litellm_key_header_name", "Authorization" ), "disabled_non_admin_personal_key_creation": disabled_non_admin_personal_key_creation, }, master_key, algorithm="HS256", ) litellm_dashboard_ui += "?userID=" + user_id redirect_response = RedirectResponse(url=litellm_dashboard_ui, status_code=303) redirect_response.set_cookie(key="token", value=jwt_token) return redirect_response elif _user_row is not None: """ When sharing invite links -> if the user has no role in the DB assume they are only a viewer """ user_id = getattr(_user_row, "user_id", "unknown") user_role = getattr( _user_row, "user_role", LitellmUserRoles.INTERNAL_USER_VIEW_ONLY ) user_email = getattr(_user_row, "user_email", "unknown") _password = getattr(_user_row, "password", "unknown") # check if password == _user_row.password hash_password = hash_token(token=password) if secrets.compare_digest(password, _password) or secrets.compare_digest( hash_password, _password ): if os.getenv("DATABASE_URL") is not None: response = await generate_key_helper_fn( request_type="key", **{ # type: ignore "user_role": user_role, "duration": "24hr", "key_max_budget": litellm.max_ui_session_budget, "models": [], "aliases": {}, "config": {}, "spend": 0, "user_id": user_id, "team_id": "litellm-dashboard", }, ) else: raise ProxyException( message="No Database connected. Set DATABASE_URL in .env. If set, use `--detailed_debug` to debug issue.", type=ProxyErrorTypes.auth_error, param="DATABASE_URL", code=status.HTTP_500_INTERNAL_SERVER_ERROR, ) key = response["token"] # type: ignore litellm_dashboard_ui = os.getenv("PROXY_BASE_URL", "") if litellm_dashboard_ui.endswith("/"): litellm_dashboard_ui += "ui/" else: litellm_dashboard_ui += "/ui/" import jwt jwt_token = jwt.encode( # type: ignore { "user_id": user_id, "key": key, "user_email": user_email, "user_role": user_role, "login_method": "username_password", "premium_user": premium_user, "auth_header_name": general_settings.get( "litellm_key_header_name", "Authorization" ), "disabled_non_admin_personal_key_creation": disabled_non_admin_personal_key_creation, }, master_key, algorithm="HS256", ) litellm_dashboard_ui += "?userID=" + user_id redirect_response = RedirectResponse( url=litellm_dashboard_ui, status_code=303 ) redirect_response.set_cookie(key="token", value=jwt_token) return redirect_response else: raise ProxyException( message=f"Invalid credentials used to access UI.\nNot valid credentials for {username}", type=ProxyErrorTypes.auth_error, param="invalid_credentials", code=status.HTTP_401_UNAUTHORIZED, ) else: raise ProxyException( message="Invalid credentials used to access UI.\nCheck 'UI_USERNAME', 'UI_PASSWORD' in .env file", type=ProxyErrorTypes.auth_error, param="invalid_credentials", code=status.HTTP_401_UNAUTHORIZED, ) @app.get("/onboarding/get_token", include_in_schema=False) async def onboarding(invite_link: str): """ - Get the invite link - Validate it's still 'valid' - Invalidate the link (prevents abuse) - Get user from db - Pass in user_email if set """ global prisma_client, master_key, general_settings if master_key is None: raise ProxyException( message="Master Key not set for Proxy. Please set Master Key to use Admin UI. Set `LITELLM_MASTER_KEY` in .env or set general_settings:master_key in config.yaml. https://docs.litellm.ai/docs/proxy/virtual_keys. If set, use `--detailed_debug` to debug issue.", type=ProxyErrorTypes.auth_error, param="master_key", code=status.HTTP_500_INTERNAL_SERVER_ERROR, ) ### VALIDATE INVITE LINK ### if prisma_client is None: raise HTTPException( status_code=500, detail={"error": CommonProxyErrors.db_not_connected_error.value}, ) invite_obj = await prisma_client.db.litellm_invitationlink.find_unique( where={"id": invite_link} ) if invite_obj is None: raise HTTPException( status_code=401, detail={"error": "Invitation link does not exist in db."} ) #### CHECK IF EXPIRED # Extract the date part from both datetime objects utc_now_date = litellm.utils.get_utc_datetime().date() expires_at_date = invite_obj.expires_at.date() if expires_at_date < utc_now_date: raise HTTPException( status_code=401, detail={"error": "Invitation link has expired."} ) #### INVALIDATE LINK current_time = litellm.utils.get_utc_datetime() _ = await prisma_client.db.litellm_invitationlink.update( where={"id": invite_link}, data={ "accepted_at": current_time, "updated_at": current_time, "is_accepted": True, "updated_by": invite_obj.user_id, # type: ignore }, ) ### GET USER OBJECT ### user_obj = await prisma_client.db.litellm_usertable.find_unique( where={"user_id": invite_obj.user_id} ) if user_obj is None: raise HTTPException( status_code=401, detail={"error": "User does not exist in db."} ) user_email = user_obj.user_email response = await generate_key_helper_fn( request_type="key", **{ "user_role": user_obj.user_role, "duration": "24hr", "key_max_budget": litellm.max_ui_session_budget, "models": [], "aliases": {}, "config": {}, "spend": 0, "user_id": user_obj.user_id, "team_id": "litellm-dashboard", }, # type: ignore ) key = response["token"] # type: ignore litellm_dashboard_ui = os.getenv("PROXY_BASE_URL", "") if litellm_dashboard_ui.endswith("/"): litellm_dashboard_ui += "ui/onboarding" else: litellm_dashboard_ui += "/ui/onboarding" import jwt disabled_non_admin_personal_key_creation = ( get_disabled_non_admin_personal_key_creation() ) jwt_token = jwt.encode( # type: ignore { "user_id": user_obj.user_id, "key": key, "user_email": user_obj.user_email, "user_role": user_obj.user_role, "login_method": "username_password", "premium_user": premium_user, "auth_header_name": general_settings.get( "litellm_key_header_name", "Authorization" ), "disabled_non_admin_personal_key_creation": disabled_non_admin_personal_key_creation, }, master_key, algorithm="HS256", ) litellm_dashboard_ui += "?token={}&user_email={}".format(jwt_token, user_email) return { "login_url": litellm_dashboard_ui, "token": jwt_token, "user_email": user_email, } @app.post("/onboarding/claim_token", include_in_schema=False) async def claim_onboarding_link(data: InvitationClaim): """ Special route. Allows UI link share user to update their password. - Get the invite link - Validate it's still 'valid' - Check if user within initial session (prevents abuse) - Get user from db - Update user password This route can only update user password. """ global prisma_client ### VALIDATE INVITE LINK ### if prisma_client is None: raise HTTPException( status_code=500, detail={"error": CommonProxyErrors.db_not_connected_error.value}, ) invite_obj = await prisma_client.db.litellm_invitationlink.find_unique( where={"id": data.invitation_link} ) if invite_obj is None: raise HTTPException( status_code=401, detail={"error": "Invitation link does not exist in db."} ) #### CHECK IF EXPIRED # Extract the date part from both datetime objects utc_now_date = litellm.utils.get_utc_datetime().date() expires_at_date = invite_obj.expires_at.date() if expires_at_date < utc_now_date: raise HTTPException( status_code=401, detail={"error": "Invitation link has expired."} ) #### CHECK IF CLAIMED ##### if claimed - accept ##### if unclaimed - reject if invite_obj.is_accepted is True: # this is a valid invite that was accepted pass else: raise HTTPException( status_code=401, detail={ "error": "The invitation link was never validated. Please file an issue, if this is not intended - https://github.com/BerriAI/litellm/issues." }, ) #### CHECK IF VALID USER ID if invite_obj.user_id != data.user_id: raise HTTPException( status_code=401, detail={ "error": "Invalid invitation link. The user id submitted does not match the user id this link is attached to. Got={}, Expected={}".format( data.user_id, invite_obj.user_id ) }, ) ### UPDATE USER OBJECT ### hash_password = hash_token(token=data.password) user_obj = await prisma_client.db.litellm_usertable.update( where={"user_id": invite_obj.user_id}, data={"password": hash_password} ) if user_obj is None: raise HTTPException( status_code=401, detail={"error": "User does not exist in db."} ) return user_obj @app.get("/get_image", include_in_schema=False) def get_image(): """Get logo to show on admin UI""" # get current_dir current_dir = os.path.dirname(os.path.abspath(__file__)) default_logo = os.path.join(current_dir, "logo.jpg") logo_path = os.getenv("UI_LOGO_PATH", default_logo) verbose_proxy_logger.debug("Reading logo from path: %s", logo_path) # Check if the logo path is an HTTP/HTTPS URL if logo_path.startswith(("http://", "https://")): # Download the image and cache it client = HTTPHandler() response = client.get(logo_path) if response.status_code == 200: # Save the image to a local file cache_path = os.path.join(current_dir, "cached_logo.jpg") with open(cache_path, "wb") as f: f.write(response.content) # Return the cached image as a FileResponse return FileResponse(cache_path, media_type="image/jpeg") else: # Handle the case when the image cannot be downloaded return FileResponse(default_logo, media_type="image/jpeg") else: # Return the local image file if the logo path is not an HTTP/HTTPS URL return FileResponse(logo_path, media_type="image/jpeg") #### INVITATION MANAGEMENT #### @router.post( "/invitation/new", tags=["Invite Links"], dependencies=[Depends(user_api_key_auth)], response_model=InvitationModel, include_in_schema=False, ) async def new_invitation( data: InvitationNew, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth) ): """ Allow admin to create invite links, to onboard new users to Admin UI. ``` curl -X POST 'http://localhost:4000/invitation/new' \ -H 'Content-Type: application/json' \ -d '{ "user_id": "1234" // šŸ‘ˆ id of user in 'LiteLLM_UserTable' }' ``` """ global prisma_client if prisma_client is None: raise HTTPException( status_code=400, detail={"error": CommonProxyErrors.db_not_connected_error.value}, ) if user_api_key_dict.user_role != LitellmUserRoles.PROXY_ADMIN: raise HTTPException( status_code=400, detail={ "error": "{}, your role={}".format( CommonProxyErrors.not_allowed_access.value, user_api_key_dict.user_role, ) }, ) current_time = litellm.utils.get_utc_datetime() expires_at = current_time + timedelta(days=7) try: response = await prisma_client.db.litellm_invitationlink.create( data={ "user_id": data.user_id, "created_at": current_time, "expires_at": expires_at, "created_by": user_api_key_dict.user_id or litellm_proxy_admin_name, "updated_at": current_time, "updated_by": user_api_key_dict.user_id or litellm_proxy_admin_name, } # type: ignore ) return response except Exception as e: if "Foreign key constraint failed on the field" in str(e): raise HTTPException( status_code=400, detail={ "error": "User id does not exist in 'LiteLLM_UserTable'. Fix this by creating user via `/user/new`." }, ) raise HTTPException(status_code=500, detail={"error": str(e)}) @router.get( "/invitation/info", tags=["Invite Links"], dependencies=[Depends(user_api_key_auth)], response_model=InvitationModel, include_in_schema=False, ) async def invitation_info( invitation_id: str, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth) ): """ Allow admin to create invite links, to onboard new users to Admin UI. ``` curl -X POST 'http://localhost:4000/invitation/new' \ -H 'Content-Type: application/json' \ -d '{ "user_id": "1234" // šŸ‘ˆ id of user in 'LiteLLM_UserTable' }' ``` """ global prisma_client if prisma_client is None: raise HTTPException( status_code=400, detail={"error": CommonProxyErrors.db_not_connected_error.value}, ) if user_api_key_dict.user_role != LitellmUserRoles.PROXY_ADMIN: raise HTTPException( status_code=400, detail={ "error": "{}, your role={}".format( CommonProxyErrors.not_allowed_access.value, user_api_key_dict.user_role, ) }, ) response = await prisma_client.db.litellm_invitationlink.find_unique( where={"id": invitation_id} ) if response is None: raise HTTPException( status_code=400, detail={"error": "Invitation id does not exist in the database."}, ) return response @router.post( "/invitation/update", tags=["Invite Links"], dependencies=[Depends(user_api_key_auth)], response_model=InvitationModel, include_in_schema=False, ) async def invitation_update( data: InvitationUpdate, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Update when invitation is accepted ``` curl -X POST 'http://localhost:4000/invitation/update' \ -H 'Content-Type: application/json' \ -d '{ "invitation_id": "1234" // šŸ‘ˆ id of invitation in 'LiteLLM_InvitationTable' "is_accepted": True // when invitation is accepted }' ``` """ global prisma_client if prisma_client is None: raise HTTPException( status_code=400, detail={"error": CommonProxyErrors.db_not_connected_error.value}, ) if user_api_key_dict.user_id is None: raise HTTPException( status_code=500, detail={ "error": "Unable to identify user id. Received={}".format( user_api_key_dict.user_id ) }, ) current_time = litellm.utils.get_utc_datetime() response = await prisma_client.db.litellm_invitationlink.update( where={"id": data.invitation_id}, data={ "id": data.invitation_id, "is_accepted": data.is_accepted, "accepted_at": current_time, "updated_at": current_time, "updated_by": user_api_key_dict.user_id, # type: ignore }, ) if response is None: raise HTTPException( status_code=400, detail={"error": "Invitation id does not exist in the database."}, ) return response @router.post( "/invitation/delete", tags=["Invite Links"], dependencies=[Depends(user_api_key_auth)], response_model=InvitationModel, include_in_schema=False, ) async def invitation_delete( data: InvitationDelete, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Delete invitation link ``` curl -X POST 'http://localhost:4000/invitation/delete' \ -H 'Content-Type: application/json' \ -d '{ "invitation_id": "1234" // šŸ‘ˆ id of invitation in 'LiteLLM_InvitationTable' }' ``` """ global prisma_client if prisma_client is None: raise HTTPException( status_code=400, detail={"error": CommonProxyErrors.db_not_connected_error.value}, ) if user_api_key_dict.user_role != LitellmUserRoles.PROXY_ADMIN: raise HTTPException( status_code=400, detail={ "error": "{}, your role={}".format( CommonProxyErrors.not_allowed_access.value, user_api_key_dict.user_role, ) }, ) response = await prisma_client.db.litellm_invitationlink.delete( where={"id": data.invitation_id} ) if response is None: raise HTTPException( status_code=400, detail={"error": "Invitation id does not exist in the database."}, ) return response #### CONFIG MANAGEMENT #### @router.post( "/config/update", tags=["config.yaml"], dependencies=[Depends(user_api_key_auth)], include_in_schema=False, ) async def update_config(config_info: ConfigYAML): # noqa: PLR0915 """ For Admin UI - allows admin to update config via UI Currently supports modifying General Settings + LiteLLM settings """ global llm_router, llm_model_list, general_settings, proxy_config, proxy_logging_obj, master_key, prisma_client try: import base64 """ - Update the ConfigTable DB - Run 'add_deployment' """ if prisma_client is None: raise Exception("No DB Connected") if store_model_in_db is not True: raise HTTPException( status_code=500, detail={ "error": "Set `'STORE_MODEL_IN_DB='True'` in your env to enable this feature." }, ) updated_settings = config_info.json(exclude_none=True) updated_settings = prisma_client.jsonify_object(updated_settings) for k, v in updated_settings.items(): if k == "router_settings": await prisma_client.db.litellm_config.upsert( where={"param_name": k}, data={ "create": {"param_name": k, "param_value": v}, "update": {"param_value": v}, }, ) ### OLD LOGIC [TODO] MOVE TO DB ### # Load existing config config = await proxy_config.get_config() verbose_proxy_logger.debug("Loaded config: %s", config) # update the general settings if config_info.general_settings is not None: config.setdefault("general_settings", {}) updated_general_settings = config_info.general_settings.dict( exclude_none=True ) _existing_settings = config["general_settings"] for k, v in updated_general_settings.items(): # overwrite existing settings with updated values if k == "alert_to_webhook_url": # check if slack is already enabled. if not, enable it if "alerting" not in _existing_settings: _existing_settings = {"alerting": ["slack"]} elif isinstance(_existing_settings["alerting"], list): if "slack" not in _existing_settings["alerting"]: _existing_settings["alerting"].append("slack") _existing_settings[k] = v config["general_settings"] = _existing_settings if config_info.environment_variables is not None: config.setdefault("environment_variables", {}) _updated_environment_variables = config_info.environment_variables # encrypt updated_environment_variables # for k, v in _updated_environment_variables.items(): encrypted_value = encrypt_value_helper(value=v) _updated_environment_variables[k] = encrypted_value _existing_env_variables = config["environment_variables"] for k, v in _updated_environment_variables.items(): # overwrite existing env variables with updated values _existing_env_variables[k] = _updated_environment_variables[k] # update the litellm settings if config_info.litellm_settings is not None: config.setdefault("litellm_settings", {}) updated_litellm_settings = config_info.litellm_settings config["litellm_settings"] = { **updated_litellm_settings, **config["litellm_settings"], } # if litellm.success_callback in updated_litellm_settings and config["litellm_settings"] if ( "success_callback" in updated_litellm_settings and "success_callback" in config["litellm_settings"] ): # check both success callback are lists if isinstance( config["litellm_settings"]["success_callback"], list ) and isinstance(updated_litellm_settings["success_callback"], list): combined_success_callback = ( config["litellm_settings"]["success_callback"] + updated_litellm_settings["success_callback"] ) combined_success_callback = list(set(combined_success_callback)) config["litellm_settings"][ "success_callback" ] = combined_success_callback # Save the updated config await proxy_config.save_config(new_config=config) await proxy_config.add_deployment( prisma_client=prisma_client, proxy_logging_obj=proxy_logging_obj ) return {"message": "Config updated successfully"} except Exception as e: verbose_proxy_logger.error( "litellm.proxy.proxy_server.update_config(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "detail", f"Authentication Error({str(e)})"), type=ProxyErrorTypes.auth_error, param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) elif isinstance(e, ProxyException): raise e raise ProxyException( message="Authentication Error, " + str(e), type=ProxyErrorTypes.auth_error, param=getattr(e, "param", "None"), code=status.HTTP_400_BAD_REQUEST, ) ### CONFIG GENERAL SETTINGS """ - Update config settings - Get config settings Keep it more precise, to prevent overwrite other values unintentially """ @router.post( "/config/field/update", tags=["config.yaml"], dependencies=[Depends(user_api_key_auth)], include_in_schema=False, ) async def update_config_general_settings( data: ConfigFieldUpdate, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Update a specific field in litellm general settings """ global prisma_client ## VALIDATION ## """ - Check if prisma_client is None - Check if user allowed to call this endpoint (admin-only) - Check if param in general settings - Check if config value is valid type """ if prisma_client is None: raise HTTPException( status_code=400, detail={"error": CommonProxyErrors.db_not_connected_error.value}, ) if user_api_key_dict.user_role != LitellmUserRoles.PROXY_ADMIN: raise HTTPException( status_code=400, detail={"error": CommonProxyErrors.not_allowed_access.value}, ) if data.field_name not in ConfigGeneralSettings.model_fields: raise HTTPException( status_code=400, detail={"error": "Invalid field={} passed in.".format(data.field_name)}, ) try: ConfigGeneralSettings(**{data.field_name: data.field_value}) except Exception: raise HTTPException( status_code=400, detail={ "error": "Invalid type of field value={} passed in.".format( type(data.field_value), ) }, ) ## get general settings from db db_general_settings = await prisma_client.db.litellm_config.find_first( where={"param_name": "general_settings"} ) ### update value if db_general_settings is None or db_general_settings.param_value is None: general_settings = {} else: general_settings = dict(db_general_settings.param_value) ## update db general_settings[data.field_name] = data.field_value response = await prisma_client.db.litellm_config.upsert( where={"param_name": "general_settings"}, data={ "create": {"param_name": "general_settings", "param_value": json.dumps(general_settings)}, # type: ignore "update": {"param_value": json.dumps(general_settings)}, # type: ignore }, ) return response @router.get( "/config/field/info", tags=["config.yaml"], dependencies=[Depends(user_api_key_auth)], response_model=ConfigFieldInfo, include_in_schema=False, ) async def get_config_general_settings( field_name: str, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): global prisma_client ## VALIDATION ## """ - Check if prisma_client is None - Check if user allowed to call this endpoint (admin-only) - Check if param in general settings """ if prisma_client is None: raise HTTPException( status_code=400, detail={"error": CommonProxyErrors.db_not_connected_error.value}, ) if user_api_key_dict.user_role != LitellmUserRoles.PROXY_ADMIN: raise HTTPException( status_code=400, detail={"error": CommonProxyErrors.not_allowed_access.value}, ) if field_name not in ConfigGeneralSettings.model_fields: raise HTTPException( status_code=400, detail={"error": "Invalid field={} passed in.".format(field_name)}, ) ## get general settings from db db_general_settings = await prisma_client.db.litellm_config.find_first( where={"param_name": "general_settings"} ) ### pop the value if db_general_settings is None or db_general_settings.param_value is None: raise HTTPException( status_code=400, detail={"error": "Field name={} not in DB".format(field_name)}, ) else: general_settings = dict(db_general_settings.param_value) if field_name in general_settings: return ConfigFieldInfo( field_name=field_name, field_value=general_settings[field_name] ) else: raise HTTPException( status_code=400, detail={"error": "Field name={} not in DB".format(field_name)}, ) @router.get( "/config/list", tags=["config.yaml"], dependencies=[Depends(user_api_key_auth)], include_in_schema=False, ) async def get_config_list( config_type: Literal["general_settings"], user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ) -> List[ConfigList]: """ List the available fields + current values for a given type of setting (currently just 'general_settings'user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),) """ global prisma_client, general_settings ## VALIDATION ## """ - Check if prisma_client is None - Check if user allowed to call this endpoint (admin-only) - Check if param in general settings """ if prisma_client is None: raise HTTPException( status_code=400, detail={"error": CommonProxyErrors.db_not_connected_error.value}, ) if user_api_key_dict.user_role != LitellmUserRoles.PROXY_ADMIN: raise HTTPException( status_code=400, detail={ "error": "{}, your role={}".format( CommonProxyErrors.not_allowed_access.value, user_api_key_dict.user_role, ) }, ) ## get general settings from db db_general_settings = await prisma_client.db.litellm_config.find_first( where={"param_name": "general_settings"} ) if db_general_settings is not None and db_general_settings.param_value is not None: db_general_settings_dict = dict(db_general_settings.param_value) else: db_general_settings_dict = {} allowed_args = { "max_parallel_requests": {"type": "Integer"}, "global_max_parallel_requests": {"type": "Integer"}, "max_request_size_mb": {"type": "Integer"}, "max_response_size_mb": {"type": "Integer"}, "pass_through_endpoints": {"type": "PydanticModel"}, } return_val = [] for field_name, field_info in ConfigGeneralSettings.model_fields.items(): if field_name in allowed_args: ## HANDLE TYPED DICT typed_dict_type = allowed_args[field_name]["type"] if typed_dict_type == "PydanticModel": if field_name == "pass_through_endpoints": pydantic_class_list = [PassThroughGenericEndpoint] else: pydantic_class_list = [] for pydantic_class in pydantic_class_list: # Get type hints from the TypedDict to create FieldDetail objects nested_fields = [ FieldDetail( field_name=sub_field, field_type=sub_field_type.__name__, field_description="", # Add custom logic if descriptions are available field_default_value=general_settings.get(sub_field, None), stored_in_db=None, ) for sub_field, sub_field_type in pydantic_class.__annotations__.items() ] idx = 0 for ( sub_field, sub_field_info, ) in pydantic_class.model_fields.items(): if ( hasattr(sub_field_info, "description") and sub_field_info.description is not None ): nested_fields[idx].field_description = ( sub_field_info.description ) idx += 1 _stored_in_db = None if field_name in db_general_settings_dict: _stored_in_db = True elif field_name in general_settings: _stored_in_db = False _response_obj = ConfigList( field_name=field_name, field_type=allowed_args[field_name]["type"], field_description=field_info.description or "", field_value=general_settings.get(field_name, None), stored_in_db=_stored_in_db, field_default_value=field_info.default, nested_fields=nested_fields, ) return_val.append(_response_obj) else: nested_fields = None _stored_in_db = None if field_name in db_general_settings_dict: _stored_in_db = True elif field_name in general_settings: _stored_in_db = False _response_obj = ConfigList( field_name=field_name, field_type=allowed_args[field_name]["type"], field_description=field_info.description or "", field_value=general_settings.get(field_name, None), stored_in_db=_stored_in_db, field_default_value=field_info.default, nested_fields=nested_fields, ) return_val.append(_response_obj) return return_val @router.post( "/config/field/delete", tags=["config.yaml"], dependencies=[Depends(user_api_key_auth)], include_in_schema=False, ) async def delete_config_general_settings( data: ConfigFieldDelete, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Delete the db value of this field in litellm general settings. Resets it to it's initial default value on litellm. """ global prisma_client ## VALIDATION ## """ - Check if prisma_client is None - Check if user allowed to call this endpoint (admin-only) - Check if param in general settings """ if prisma_client is None: raise HTTPException( status_code=400, detail={"error": CommonProxyErrors.db_not_connected_error.value}, ) if user_api_key_dict.user_role != LitellmUserRoles.PROXY_ADMIN: raise HTTPException( status_code=400, detail={ "error": "{}, your role={}".format( CommonProxyErrors.not_allowed_access.value, user_api_key_dict.user_role, ) }, ) if data.field_name not in ConfigGeneralSettings.model_fields: raise HTTPException( status_code=400, detail={"error": "Invalid field={} passed in.".format(data.field_name)}, ) ## get general settings from db db_general_settings = await prisma_client.db.litellm_config.find_first( where={"param_name": "general_settings"} ) ### pop the value if db_general_settings is None or db_general_settings.param_value is None: raise HTTPException( status_code=400, detail={"error": "Field name={} not in config".format(data.field_name)}, ) else: general_settings = dict(db_general_settings.param_value) ## update db general_settings.pop(data.field_name, None) response = await prisma_client.db.litellm_config.upsert( where={"param_name": "general_settings"}, data={ "create": {"param_name": "general_settings", "param_value": json.dumps(general_settings)}, # type: ignore "update": {"param_value": json.dumps(general_settings)}, # type: ignore }, ) return response @router.get( "/get/config/callbacks", tags=["config.yaml"], include_in_schema=False, dependencies=[Depends(user_api_key_auth)], ) async def get_config(): # noqa: PLR0915 """ For Admin UI - allows admin to view config via UI # return the callbacks and the env variables for the callback """ global llm_router, llm_model_list, general_settings, proxy_config, proxy_logging_obj, master_key try: import base64 all_available_callbacks = AllCallbacks() config_data = await proxy_config.get_config() _litellm_settings = config_data.get("litellm_settings", {}) _general_settings = config_data.get("general_settings", {}) environment_variables = config_data.get("environment_variables", {}) # check if "langfuse" in litellm_settings _success_callbacks = _litellm_settings.get("success_callback", []) _data_to_return = [] """ [ { "name": "langfuse", "variables": { "LANGFUSE_PUB_KEY": "value", "LANGFUSE_SECRET_KEY": "value", "LANGFUSE_HOST": "value" }, } ] """ for _callback in _success_callbacks: if _callback != "langfuse": if _callback == "openmeter": env_vars = [ "OPENMETER_API_KEY", ] elif _callback == "braintrust": env_vars = [ "BRAINTRUST_API_KEY", ] elif _callback == "traceloop": env_vars = ["TRACELOOP_API_KEY"] elif _callback == "custom_callback_api": env_vars = ["GENERIC_LOGGER_ENDPOINT"] elif _callback == "otel": env_vars = ["OTEL_EXPORTER", "OTEL_ENDPOINT", "OTEL_HEADERS"] elif _callback == "langsmith": env_vars = [ "LANGSMITH_API_KEY", "LANGSMITH_PROJECT", "LANGSMITH_DEFAULT_RUN_NAME", ] else: env_vars = [] env_vars_dict = {} for _var in env_vars: env_variable = environment_variables.get(_var, None) if env_variable is None: env_vars_dict[_var] = None else: # decode + decrypt the value decrypted_value = decrypt_value_helper(value=env_variable) env_vars_dict[_var] = decrypted_value _data_to_return.append({"name": _callback, "variables": env_vars_dict}) elif _callback == "langfuse": _langfuse_vars = [ "LANGFUSE_PUBLIC_KEY", "LANGFUSE_SECRET_KEY", "LANGFUSE_HOST", ] _langfuse_env_vars = {} for _var in _langfuse_vars: env_variable = environment_variables.get(_var, None) if env_variable is None: _langfuse_env_vars[_var] = None else: # decode + decrypt the value decrypted_value = decrypt_value_helper(value=env_variable) _langfuse_env_vars[_var] = decrypted_value _data_to_return.append( {"name": _callback, "variables": _langfuse_env_vars} ) # Check if slack alerting is on _alerting = _general_settings.get("alerting", []) alerting_data = [] if "slack" in _alerting: _slack_vars = [ "SLACK_WEBHOOK_URL", ] _slack_env_vars = {} for _var in _slack_vars: env_variable = environment_variables.get(_var, None) if env_variable is None: _value = os.getenv("SLACK_WEBHOOK_URL", None) _slack_env_vars[_var] = _value else: # decode + decrypt the value _decrypted_value = decrypt_value_helper(value=env_variable) _slack_env_vars[_var] = _decrypted_value _alerting_types = proxy_logging_obj.slack_alerting_instance.alert_types _all_alert_types = ( proxy_logging_obj.slack_alerting_instance._all_possible_alert_types() ) _alerts_to_webhook = ( proxy_logging_obj.slack_alerting_instance.alert_to_webhook_url ) alerting_data.append( { "name": "slack", "variables": _slack_env_vars, "active_alerts": _alerting_types, "alerts_to_webhook": _alerts_to_webhook, } ) # pass email alerting vars _email_vars = [ "SMTP_HOST", "SMTP_PORT", "SMTP_USERNAME", "SMTP_PASSWORD", "SMTP_SENDER_EMAIL", "TEST_EMAIL_ADDRESS", "EMAIL_LOGO_URL", "EMAIL_SUPPORT_CONTACT", ] _email_env_vars = {} for _var in _email_vars: env_variable = environment_variables.get(_var, None) if env_variable is None: _email_env_vars[_var] = None else: # decode + decrypt the value _decrypted_value = decrypt_value_helper(value=env_variable) _email_env_vars[_var] = _decrypted_value alerting_data.append( { "name": "email", "variables": _email_env_vars, } ) if llm_router is None: _router_settings = {} else: _router_settings = llm_router.get_settings() return { "status": "success", "callbacks": _data_to_return, "alerts": alerting_data, "router_settings": _router_settings, "available_callbacks": all_available_callbacks, } except Exception as e: verbose_proxy_logger.exception( "litellm.proxy.proxy_server.get_config(): Exception occured - {}".format( str(e) ) ) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "detail", f"Authentication Error({str(e)})"), type=ProxyErrorTypes.auth_error, param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) elif isinstance(e, ProxyException): raise e raise ProxyException( message="Authentication Error, " + str(e), type=ProxyErrorTypes.auth_error, param=getattr(e, "param", "None"), code=status.HTTP_400_BAD_REQUEST, ) @router.get( "/config/yaml", tags=["config.yaml"], dependencies=[Depends(user_api_key_auth)], include_in_schema=False, ) async def config_yaml_endpoint(config_info: ConfigYAML): """ This is a mock endpoint, to show what you can set in config.yaml details in the Swagger UI. Parameters: The config.yaml object has the following attributes: - **model_list**: *Optional[List[ModelParams]]* - A list of supported models on the server, along with model-specific configurations. ModelParams includes "model_name" (name of the model), "litellm_params" (litellm-specific parameters for the model), and "model_info" (additional info about the model such as id, mode, cost per token, etc). - **litellm_settings**: *Optional[dict]*: Settings for the litellm module. You can specify multiple properties like "drop_params", "set_verbose", "api_base", "cache". - **general_settings**: *Optional[ConfigGeneralSettings]*: General settings for the server like "completion_model" (default model for chat completion calls), "use_azure_key_vault" (option to load keys from azure key vault), "master_key" (key required for all calls to proxy), and others. Please, refer to each class's description for a better understanding of the specific attributes within them. Note: This is a mock endpoint primarily meant for demonstration purposes, and does not actually provide or change any configurations. """ return {"hello": "world"} @router.get( "/get/litellm_model_cost_map", include_in_schema=False, dependencies=[Depends(user_api_key_auth)], ) async def get_litellm_model_cost_map(): try: _model_cost_map = litellm.model_cost return _model_cost_map except Exception as e: raise HTTPException( status_code=500, detail=f"Internal Server Error ({str(e)})", ) @router.get("/", dependencies=[Depends(user_api_key_auth)]) async def home(request: Request): return "LiteLLM: RUNNING" @router.get("/routes", dependencies=[Depends(user_api_key_auth)]) async def get_routes(): """ Get a list of available routes in the FastAPI application. """ routes = [] for route in app.routes: endpoint_route = getattr(route, "endpoint", None) if endpoint_route is not None: route_info = { "path": getattr(route, "path", None), "methods": getattr(route, "methods", None), "name": getattr(route, "name", None), "endpoint": ( endpoint_route.__name__ if getattr(route, "endpoint", None) else None ), } routes.append(route_info) return {"routes": routes} #### TEST ENDPOINTS #### # @router.get( # "/token/generate", # dependencies=[Depends(user_api_key_auth)], # include_in_schema=False, # ) # async def token_generate(): # """ # Test endpoint. Admin-only access. Meant for generating admin tokens with specific claims and testing if they work for creating keys, etc. # """ # # Initialize AuthJWTSSO with your OpenID Provider configuration # from fastapi_sso import AuthJWTSSO # auth_jwt_sso = AuthJWTSSO( # issuer=os.getenv("OPENID_BASE_URL"), # client_id=os.getenv("OPENID_CLIENT_ID"), # client_secret=os.getenv("OPENID_CLIENT_SECRET"), # scopes=["litellm_proxy_admin"], # ) # token = auth_jwt_sso.create_access_token() # return {"token": token} app.include_router(router) app.include_router(batches_router) app.include_router(rerank_router) app.include_router(fine_tuning_router) app.include_router(vertex_router) app.include_router(llm_passthrough_router) app.include_router(langfuse_router) app.include_router(pass_through_router) app.include_router(health_router) app.include_router(key_management_router) app.include_router(internal_user_router) app.include_router(team_router) app.include_router(ui_sso_router) app.include_router(organization_router) app.include_router(customer_router) app.include_router(spend_management_router) app.include_router(caching_router) app.include_router(analytics_router) app.include_router(guardrails_router) app.include_router(debugging_endpoints_router) app.include_router(ui_crud_endpoints_router) app.include_router(openai_files_router) app.include_router(team_callback_router) app.include_router(budget_management_router)