###################################################################### # /v1/files Endpoints # Equivalent of https://platform.openai.com/docs/api-reference/files ###################################################################### import asyncio import traceback from typing import Optional import httpx from fastapi import ( APIRouter, Depends, File, Form, HTTPException, Request, Response, UploadFile, status, ) import litellm from litellm import CreateFileRequest, get_secret_str from litellm._logging import verbose_proxy_logger from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth from litellm.proxy.common_utils.openai_endpoint_utils import ( get_custom_llm_provider_from_request_body, ) from litellm.router import Router router = APIRouter() files_config = None def set_files_config(config): global files_config if config is None: return if not isinstance(config, list): raise ValueError("invalid files config, expected a list is not a list") for element in config: if isinstance(element, dict): for key, value in element.items(): if isinstance(value, str) and value.startswith("os.environ/"): element[key] = get_secret_str(value) files_config = config def get_files_provider_config( custom_llm_provider: str, ): global files_config if custom_llm_provider == "vertex_ai": return None if files_config is None: raise ValueError("files_config is not set, set it on your config.yaml file.") for setting in files_config: if setting.get("custom_llm_provider") == custom_llm_provider: return setting return None def get_first_json_object(file_content_bytes: bytes) -> Optional[dict]: try: # Decode the bytes to a string and split into lines file_content = file_content_bytes.decode("utf-8") first_line = file_content.splitlines()[0].strip() # Parse the JSON object from the first line json_object = json.loads(first_line) return json_object except (json.JSONDecodeError, UnicodeDecodeError): return None def get_model_from_json_obj(json_object: dict) -> Optional[str]: body = json_object.get("body", {}) or {} model = body.get("model") return model def is_known_model(model: Optional[str], llm_router: Optional[Router]) -> bool: """ Returns True if the model is in the llm_router model names """ if model is None or llm_router is None: return False model_names = llm_router.get_model_names() is_in_list = False if model in model_names: is_in_list = True return is_in_list @router.post( "/{provider}/v1/files", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) @router.post( "/v1/files", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) @router.post( "/files", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) async def create_file( request: Request, fastapi_response: Response, purpose: str = Form(...), provider: Optional[str] = None, custom_llm_provider: str = Form(default="openai"), file: UploadFile = File(...), user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Upload a file that can be used across - Assistants API, Batch API This is the equivalent of POST https://api.openai.com/v1/files Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/create Example Curl ``` curl http://localhost:4000/v1/files \ -H "Authorization: Bearer sk-1234" \ -F purpose="batch" \ -F file="@mydata.jsonl" ``` """ from litellm.proxy.proxy_server import ( add_litellm_data_to_request, general_settings, get_custom_headers, llm_router, proxy_config, proxy_logging_obj, version, ) data: Dict = {} try: # Use orjson to parse JSON data, orjson speeds up requests significantly # Read the file content file_content = await file.read() custom_llm_provider = ( provider or await get_custom_llm_provider_from_request_body(request=request) or "openai" ) # Prepare the data for forwarding data = {"purpose": purpose} # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # Prepare the file data according to FileTypes file_data = (file.filename, file_content, file.content_type) ## check if model is a loadbalanced model router_model: Optional[str] = None is_router_model = False if litellm.enable_loadbalancing_on_batch_endpoints is True: json_obj = get_first_json_object(file_content_bytes=file_content) if json_obj: router_model = get_model_from_json_obj(json_object=json_obj) is_router_model = is_known_model( model=router_model, llm_router=llm_router ) _create_file_request = CreateFileRequest(file=file_data, **data) if ( litellm.enable_loadbalancing_on_batch_endpoints is True and is_router_model and router_model is not None ): if llm_router is None: raise HTTPException( status_code=500, detail={ "error": "LLM Router not initialized. Ensure models added to proxy." }, ) response = await llm_router.acreate_file( model=router_model, **_create_file_request ) else: # get configs for custom_llm_provider llm_provider_config = get_files_provider_config( custom_llm_provider=custom_llm_provider ) if llm_provider_config is not None: # add llm_provider_config to data _create_file_request.update(llm_provider_config) _create_file_request.pop("custom_llm_provider", None) # type: ignore # for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch response = await litellm.acreate_file(**_create_file_request, custom_llm_provider=custom_llm_provider) # type: ignore ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.create_file(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.get( "/{provider}/v1/files/{file_id:path}/content", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) @router.get( "/v1/files/{file_id:path}/content", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) @router.get( "/files/{file_id:path}/content", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) async def get_file_content( request: Request, fastapi_response: Response, file_id: str, provider: Optional[str] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Returns information about a specific file. that can be used across - Assistants API, Batch API This is the equivalent of GET https://api.openai.com/v1/files/{file_id}/content Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/retrieve-contents Example Curl ``` curl http://localhost:4000/v1/files/file-abc123/content \ -H "Authorization: Bearer sk-1234" ``` """ from litellm.proxy.proxy_server import ( add_litellm_data_to_request, general_settings, get_custom_headers, proxy_config, proxy_logging_obj, version, ) data: Dict = {} try: # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) custom_llm_provider = ( provider or await get_custom_llm_provider_from_request_body(request=request) or "openai" ) response = await litellm.afile_content( custom_llm_provider=custom_llm_provider, file_id=file_id, **data # type: ignore ) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), ) ) httpx_response: Optional[httpx.Response] = getattr(response, "response", None) if httpx_response is None: raise ValueError( f"Invalid response - response.response is None - got {response}" ) return Response( content=httpx_response.content, status_code=httpx_response.status_code, headers=httpx_response.headers, ) except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.retrieve_file_content(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.get( "/{provider}/v1/files/{file_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) @router.get( "/v1/files/{file_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) @router.get( "/files/{file_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) async def get_file( request: Request, fastapi_response: Response, file_id: str, provider: Optional[str] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Returns information about a specific file. that can be used across - Assistants API, Batch API This is the equivalent of GET https://api.openai.com/v1/files/{file_id} Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/retrieve Example Curl ``` curl http://localhost:4000/v1/files/file-abc123 \ -H "Authorization: Bearer sk-1234" ``` """ from litellm.proxy.proxy_server import ( add_litellm_data_to_request, general_settings, get_custom_headers, proxy_config, proxy_logging_obj, version, ) data: Dict = {} try: custom_llm_provider = ( provider or await get_custom_llm_provider_from_request_body(request=request) or "openai" ) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) response = await litellm.afile_retrieve( custom_llm_provider=custom_llm_provider, file_id=file_id, **data # type: ignore ) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.retrieve_file(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.delete( "/{provider}/v1/files/{file_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) @router.delete( "/v1/files/{file_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) @router.delete( "/files/{file_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) async def delete_file( request: Request, fastapi_response: Response, file_id: str, provider: Optional[str] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Deletes a specified file. that can be used across - Assistants API, Batch API This is the equivalent of DELETE https://api.openai.com/v1/files/{file_id} Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/delete Example Curl ``` curl http://localhost:4000/v1/files/file-abc123 \ -X DELETE \ -H "Authorization: Bearer $OPENAI_API_KEY" ``` """ from litellm.proxy.proxy_server import ( add_litellm_data_to_request, general_settings, get_custom_headers, proxy_config, proxy_logging_obj, version, ) data: Dict = {} try: custom_llm_provider = ( provider or await get_custom_llm_provider_from_request_body(request=request) or "openai" ) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) response = await litellm.afile_delete( custom_llm_provider=custom_llm_provider, file_id=file_id, **data # type: ignore ) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.retrieve_file(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), ) @router.get( "/{provider}/v1/files", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) @router.get( "/v1/files", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) @router.get( "/files", dependencies=[Depends(user_api_key_auth)], tags=["files"], ) async def list_files( request: Request, fastapi_response: Response, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), provider: Optional[str] = None, purpose: Optional[str] = None, ): """ Returns information about a specific file. that can be used across - Assistants API, Batch API This is the equivalent of GET https://api.openai.com/v1/files/ Supports Identical Params as: https://platform.openai.com/docs/api-reference/files/list Example Curl ``` curl http://localhost:4000/v1/files\ -H "Authorization: Bearer sk-1234" ``` """ from litellm.proxy.proxy_server import ( add_litellm_data_to_request, general_settings, get_custom_headers, proxy_config, proxy_logging_obj, version, ) data: Dict = {} try: custom_llm_provider = ( provider or await get_custom_llm_provider_from_request_body(request=request) or "openai" ) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) response = await litellm.afile_list( custom_llm_provider=custom_llm_provider, purpose=purpose, **data # type: ignore ) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.list_files(): Exception occured - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) if isinstance(e, HTTPException): raise ProxyException( message=getattr(e, "message", str(e.detail)), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST), ) else: error_msg = f"{str(e)}" raise ProxyException( message=getattr(e, "message", error_msg), type=getattr(e, "type", "None"), param=getattr(e, "param", "None"), code=getattr(e, "status_code", 500), )