import os import sys from typing import Dict import litellm from litellm._logging import verbose_proxy_logger from litellm.proxy.proxy_server import LiteLLM_TeamTable, UserAPIKeyAuth from litellm.types.guardrails import * sys.path.insert( 0, os.path.abspath("../..") ) # Adds the parent directory to the system path def can_modify_guardrails(team_obj: Optional[LiteLLM_TeamTable]) -> bool: if team_obj is None: return True team_metadata = team_obj.metadata or {} if team_metadata.get("guardrails", None) is not None and isinstance( team_metadata.get("guardrails"), Dict ): if team_metadata.get("guardrails", {}).get("modify_guardrails", None) is False: return False return True async def should_proceed_based_on_metadata(data: dict, guardrail_name: str) -> bool: """ checks if this guardrail should be applied to this call """ if "metadata" in data and isinstance(data["metadata"], dict): if "guardrails" in data["metadata"]: # expect users to pass # guardrails: { prompt_injection: true, rail_2: false } request_guardrails = data["metadata"]["guardrails"] verbose_proxy_logger.debug( "Guardrails %s passed in request - checking which to apply", request_guardrails, ) requested_callback_names = [] # v1 implementation of this if isinstance(request_guardrails, dict): # get guardrail configs from `init_guardrails.py` # for all requested guardrails -> get their associated callbacks for _guardrail_name, should_run in request_guardrails.items(): if should_run is False: verbose_proxy_logger.debug( "Guardrail %s skipped because request set to False", _guardrail_name, ) continue # lookup the guardrail in guardrail_name_config_map guardrail_item: GuardrailItem = litellm.guardrail_name_config_map[ _guardrail_name ] guardrail_callbacks = guardrail_item.callbacks requested_callback_names.extend(guardrail_callbacks) verbose_proxy_logger.debug( "requested_callback_names %s", requested_callback_names ) if guardrail_name in requested_callback_names: return True # Do no proceeed if - "metadata": { "guardrails": { "lakera_prompt_injection": false } } return False return True async def should_proceed_based_on_api_key( user_api_key_dict: UserAPIKeyAuth, guardrail_name: str ) -> bool: """ checks if this guardrail should be applied to this call """ if user_api_key_dict.permissions is not None: # { prompt_injection: true, rail_2: false } verbose_proxy_logger.debug( "Guardrails valid for API Key= %s - checking which to apply", user_api_key_dict.permissions, ) if not isinstance(user_api_key_dict.permissions, dict): verbose_proxy_logger.error( "API Key permissions must be a dict - %s running guardrail %s", user_api_key_dict, guardrail_name, ) return True for _guardrail_name, should_run in user_api_key_dict.permissions.items(): if should_run is False: verbose_proxy_logger.debug( "Guardrail %s skipped because request set to False", _guardrail_name, ) continue # lookup the guardrail in guardrail_name_config_map guardrail_item: GuardrailItem = litellm.guardrail_name_config_map[ _guardrail_name ] guardrail_callbacks = guardrail_item.callbacks if guardrail_name in guardrail_callbacks: return True # Do not proceeed if - "metadata": { "guardrails": { "lakera_prompt_injection": false } } return False return True