######################################################################### # /v1/fine_tuning Endpoints # Equivalent of https://platform.openai.com/docs/api-reference/fine-tuning ########################################################################## import asyncio import traceback from typing import Optional from fastapi import APIRouter, Depends, Request, Response import litellm from litellm._logging import verbose_proxy_logger from litellm.proxy._types import * from litellm.proxy.auth.user_api_key_auth import user_api_key_auth from litellm.proxy.utils import handle_exception_on_proxy router = APIRouter() from litellm.types.llms.openai import LiteLLMFineTuningJobCreate fine_tuning_config = None def set_fine_tuning_config(config): if config is None: return global fine_tuning_config if not isinstance(config, list): raise ValueError("invalid fine_tuning config, expected a list is not a list") for element in config: if isinstance(element, dict): for key, value in element.items(): if isinstance(value, str) and value.startswith("os.environ/"): element[key] = litellm.get_secret(value) fine_tuning_config = config # Function to search for specific custom_llm_provider and return its configuration def get_fine_tuning_provider_config( custom_llm_provider: str, ): global fine_tuning_config if fine_tuning_config is None: raise ValueError( "fine_tuning_config is not set, set it on your config.yaml file." ) for setting in fine_tuning_config: if setting.get("custom_llm_provider") == custom_llm_provider: return setting return None @router.post( "/v1/fine_tuning/jobs", dependencies=[Depends(user_api_key_auth)], tags=["fine-tuning"], summary="✨ (Enterprise) Create Fine-Tuning Job", ) @router.post( "/fine_tuning/jobs", dependencies=[Depends(user_api_key_auth)], tags=["fine-tuning"], summary="✨ (Enterprise) Create Fine-Tuning Job", ) async def create_fine_tuning_job( request: Request, fastapi_response: Response, fine_tuning_request: LiteLLMFineTuningJobCreate, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Creates a fine-tuning job which begins the process of creating a new model from a given dataset. This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs Supports Identical Params as: https://platform.openai.com/docs/api-reference/fine-tuning/create Example Curl: ``` curl http://localhost:4000/v1/fine_tuning/jobs \ -H "Content-Type: application/json" \ -H "Authorization: Bearer sk-1234" \ -d '{ "model": "gpt-3.5-turbo", "training_file": "file-abc123", "hyperparameters": { "n_epochs": 4 } }' ``` """ from litellm.proxy.proxy_server import ( add_litellm_data_to_request, general_settings, get_custom_headers, premium_user, proxy_config, proxy_logging_obj, version, ) data = fine_tuning_request.model_dump(exclude_none=True) try: if premium_user is not True: raise ValueError( f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}" ) # Convert Pydantic model to dict verbose_proxy_logger.debug( "Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)), ) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # get configs for custom_llm_provider llm_provider_config = get_fine_tuning_provider_config( custom_llm_provider=fine_tuning_request.custom_llm_provider, ) # add llm_provider_config to data if llm_provider_config is not None: data.update(llm_provider_config) response = await litellm.acreate_fine_tuning_job(**data) ### ALERTING ### asyncio.create_task( proxy_logging_obj.update_request_status( litellm_call_id=data.get("litellm_call_id", ""), status="success" ) ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.create_fine_tuning_job(): Exception occurred - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) raise handle_exception_on_proxy(e) @router.get( "/v1/fine_tuning/jobs/{fine_tuning_job_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["fine-tuning"], summary="✨ (Enterprise) Retrieve Fine-Tuning Job", ) @router.get( "/fine_tuning/jobs/{fine_tuning_job_id:path}", dependencies=[Depends(user_api_key_auth)], tags=["fine-tuning"], summary="✨ (Enterprise) Retrieve Fine-Tuning Job", ) async def retrieve_fine_tuning_job( request: Request, fastapi_response: Response, fine_tuning_job_id: str, custom_llm_provider: Literal["openai", "azure"], user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Retrieves a fine-tuning job. This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id} Supported Query Params: - `custom_llm_provider`: Name of the LiteLLM provider - `fine_tuning_job_id`: The ID of the fine-tuning job to retrieve. """ from litellm.proxy.proxy_server import ( add_litellm_data_to_request, general_settings, get_custom_headers, premium_user, proxy_config, proxy_logging_obj, version, ) data: dict = {} try: if premium_user is not True: raise ValueError( f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}" ) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # get configs for custom_llm_provider llm_provider_config = get_fine_tuning_provider_config( custom_llm_provider=custom_llm_provider ) if llm_provider_config is not None: data.update(llm_provider_config) response = await litellm.aretrieve_fine_tuning_job( **data, fine_tuning_job_id=fine_tuning_job_id, ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) raise handle_exception_on_proxy(e) @router.get( "/v1/fine_tuning/jobs", dependencies=[Depends(user_api_key_auth)], tags=["fine-tuning"], summary="✨ (Enterprise) List Fine-Tuning Jobs", ) @router.get( "/fine_tuning/jobs", dependencies=[Depends(user_api_key_auth)], tags=["fine-tuning"], summary="✨ (Enterprise) List Fine-Tuning Jobs", ) async def list_fine_tuning_jobs( request: Request, fastapi_response: Response, custom_llm_provider: Literal["openai", "azure"], after: Optional[str] = None, limit: Optional[int] = None, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Lists fine-tuning jobs for the organization. This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs Supported Query Params: - `custom_llm_provider`: Name of the LiteLLM provider - `after`: Identifier for the last job from the previous pagination request. - `limit`: Number of fine-tuning jobs to retrieve (default is 20). """ from litellm.proxy.proxy_server import ( add_litellm_data_to_request, general_settings, get_custom_headers, premium_user, proxy_config, proxy_logging_obj, version, ) data: dict = {} try: if premium_user is not True: raise ValueError( f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}" ) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) # get configs for custom_llm_provider llm_provider_config = get_fine_tuning_provider_config( custom_llm_provider=custom_llm_provider ) if llm_provider_config is not None: data.update(llm_provider_config) response = await litellm.alist_fine_tuning_jobs( **data, after=after, limit=limit, ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) raise handle_exception_on_proxy(e) @router.post( "/v1/fine_tuning/jobs/{fine_tuning_job_id:path}/cancel", dependencies=[Depends(user_api_key_auth)], tags=["fine-tuning"], summary="✨ (Enterprise) Cancel Fine-Tuning Jobs", ) @router.post( "/fine_tuning/jobs/{fine_tuning_job_id:path}/cancel", dependencies=[Depends(user_api_key_auth)], tags=["fine-tuning"], summary="✨ (Enterprise) Cancel Fine-Tuning Jobs", ) async def cancel_fine_tuning_job( request: Request, fastapi_response: Response, fine_tuning_job_id: str, user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth), ): """ Cancel a fine-tuning job. This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id}/cancel Supported Query Params: - `custom_llm_provider`: Name of the LiteLLM provider - `fine_tuning_job_id`: The ID of the fine-tuning job to cancel. """ from litellm.proxy.proxy_server import ( add_litellm_data_to_request, general_settings, get_custom_headers, premium_user, proxy_config, proxy_logging_obj, version, ) data: dict = {} try: if premium_user is not True: raise ValueError( f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}" ) # Include original request and headers in the data data = await add_litellm_data_to_request( data=data, request=request, general_settings=general_settings, user_api_key_dict=user_api_key_dict, version=version, proxy_config=proxy_config, ) request_body = await request.json() custom_llm_provider = request_body.get("custom_llm_provider", None) # get configs for custom_llm_provider llm_provider_config = get_fine_tuning_provider_config( custom_llm_provider=custom_llm_provider ) if llm_provider_config is not None: data.update(llm_provider_config) response = await litellm.acancel_fine_tuning_job( **data, fine_tuning_job_id=fine_tuning_job_id, ) ### RESPONSE HEADERS ### hidden_params = getattr(response, "_hidden_params", {}) or {} model_id = hidden_params.get("model_id", None) or "" cache_key = hidden_params.get("cache_key", None) or "" api_base = hidden_params.get("api_base", None) or "" fastapi_response.headers.update( get_custom_headers( user_api_key_dict=user_api_key_dict, model_id=model_id, cache_key=cache_key, api_base=api_base, version=version, model_region=getattr(user_api_key_dict, "allowed_model_region", ""), ) ) return response except Exception as e: await proxy_logging_obj.post_call_failure_hook( user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data ) verbose_proxy_logger.error( "litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format( str(e) ) ) verbose_proxy_logger.debug(traceback.format_exc()) raise handle_exception_on_proxy(e)